Bài tập thiết diện của hình nón - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Hình nón, khối nón

Bài tập thiết diện của hình nón

Bài 1: Cắt hình nón (N) bằng một mặt phẳng đi qua trục của hình nón được thiết diện là một tam giác vuông cân có diện tích bằng 3a2. Diện tích xung quanh của (N) là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : D

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

∆SAB vuông cân tại S

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Diện tích xung quanh của hình nón là:

Sxq = πrl = π.AO.SA = π.a√6.a√3 = 3πa2 √2

Bài 2: Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích 50 (cm2). Thể tích khối nón là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

∆SAB vuông cân tại S

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Thể tích của khối nón là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 3: Thiết diện qua trục của hình nón là tam giác đều cạnh là 6cm. Thiết diện qua hai đường sinh và hai đường sinh tạo thành góc 30º, thì diện tích của nó tính bằng cm2 là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : A

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

∆SAB đều có cạnh bằng 6 ⇒ SA=6

∆SAC cân tại S nên SA = SC = 6

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 4: Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh huyền 2a. Thể tích của khối nón bằng

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : A

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

∆SAB vuông cân tại S có AB = 2a

∆SAO vuông cân tại O có AO=SO=AB/2=a

Thể tích của khối nón là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 5: Cho hình nón có đáy là đường tròn đường kính 10, chiều cao 15. Mặt phẳng vuông góc với trục cắt hình nón theo giao tuyến là một đường tròn. Thể tích của khối nón có đường cao bằng 6 là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy thể tích khối chóp có đường cao bằng 6 là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 6: Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Một thiết diện qua đỉnh tạo với đáy một góc 60º. Diện tích của thiết diện này bằng:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Thiết diện qua đỉnh tạo với đáy một góc 60º là ∆SAC

+ ∆SAB vuông cân tại S, có SA = a

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

+ Kẻ OP ⊥ AC

Ta có: OP ⊥ AC;SO ⊥ AC ⇒ SP ⊥ AC

Khi đó, góc giữa (SAC) và đáy là góc giữa SP và OP

⇒ ∠(SPO) = 60º

Xét ∆SPO vuông tại O có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 7: Hình nón có đường cao 20 cm, bán kính đáy 25 cm. Một mặt phẳng (P) qua đỉnh của hình nón và có khoảng cách đến tâm là 12cm. Diện tích thiết diện tạo bởi (P) và hình nón là

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi M là trung điểm của AC. Kẻ OH ⊥ SM

∆SAC cân tại S nên SM ⊥ AC

Lại có SO ⊥ AC

⇒ (SMO) ⊥ AC ⇒ OH ⊥ AC

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Do đó, khoảng cách từ tâm đến (P) là độ dài đoạn OH ⇒ OH=12

Xét tam giác SMO vuông tại O, OH là đường cao có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 8: Một hình nón đỉnh S có tâm mặt đáy là O. Cắt hình nón bởi một mặt phẳng (P) đi qua S được thiết diện là một tam giác đều cạnh A. Biết góc giữa (P) và mặt đáy bằng 45º. Thể tích khối nón được tính theo a là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : D

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Mặt phẳng (P) cắt hình nón theo thiết diện là tam giác SAC

Gọi M là trung điểm của AC. Kẻ OH ⊥ SM

∆SAC cân tại S nên SM ⊥ AC

Lại có SO ⊥ AC

⇒ (SMO) ⊥ AC ⇒ OM ⊥ AC

Khi đó, góc giữa (P) và mặt đáy là góc giữa SM và OM

⇒ ∠(SMO) = 45º

Theo giả thiết ∆SAC đều cạnh a nên SA=a; SM=(a√3)/2

Xét tam giác SMO vuông tại O có ∠(SMO) = 45º

⇒ ∆SMO vuông cân tại O

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 9: Cho hình nón có độ dài đường sinh là l=4 cm, bán kính đường tròn đáy là r=2 cm. Thiết diện qua trục của hình nón là hình gì?

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : C

Giải thích :

Bán kính đáy r=2 cm ⇒ Đường kính đáy là d = 4 cm

⇒ l=d=4cm

⇒ Thiết diện qua trục là tam giác đều cạnh 4 cm.

Bài 10: Thiết diện qua trục của một hình nón là tam giác vuông cân có cạnh huyền bằng 2√3. Thể tích của khối nón này là:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

∆SAB vuông cân tại S có AB=2√3

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


hinh-non-khoi-non.jsp


Các loạt bài lớp 12 khác