Bài tập Tìm m để giao điểm của hai đồ thị thoả mãn điều kiện - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Tương giao của đồ thị hàm số

Bài tập Tìm m để giao điểm của hai đồ thị thoả mãn điều kiện

Câu 1: Tìm m để đường thẳng d: y = mx + 1 cắt đồ thị (H):y= (x + 1)/(x - 1) tại hai điểm thuộc hai nhánh của đồ thị (H).

Câu 2: Cho hàm số y = x3-3x2+(m-1)x+1 có đồ thị (Cm). Tìm m để đồ thị (Cm) cắt đường thẳng d: y = -x + 1 tại ba điểm A(0; 1),B,C sao cho BC = √10

Câu 3: Cho hàm số y = (2x+1)/(x+1) (C). Tìm k để đường thẳng d: y = kx + 2k + 1 cắt (C) tại hai điểm phân biệt A, B sao cho khoảng cách từ A và B đến trục hoành bằng nhau.

Câu 4: Cho hàm số y = (2x+1)/(x+1) (C). Tìm m để đường thẳng d: y = -2x + m cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích là √3

Câu 5: Tìm tất cả các giá trị thực của tham số m để đường thẳng d: y = x - 2m cắt đồ thị hàm số y= (x - 3)/(x + 1) (C) tại hai điểm phân biệt có hoành độ dương.

Câu 6: Tìm m, n để đường thẳng d: y = mx + 3n - 9 cắt đồ thị (H) của hàm số y = (3x + 1)/(x - 1) tại hai điểm phân biệt A, B đối xứng qua gốc tọa độ O.

Câu 7: Tìm m để đường thẳng d: y = x - m cắt đồ thị (Cm): y = x3 + 3x2 + mx - 3(m là tham số) tại ba điểm phân biệt x1,2,3 sao cho biểu thức T = 2(x12 + 22 + 32 ) + 3x12 2232 - 5 đạt giá trị nhỏ nhất.

Đáp án và hướng dẫn giải

Câu 1: Phương trình hoành độ giao điểm của (d) và (H): (x + 1)/(x - 1) = mx + 1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Gọi A(x1;y1 ); B(xx2; yx2) lần lượt là giao điểm của (d) và (H) thì ta có x1, xx2 là các nghiệm của phương trình f(x) = 0. Đồng thời do A, B thuộc hai nhánh của đồ thị (H) nên ta phải có x1 < 1 < xx2 ⇔ (x1 - 1)(xx2 - 1) < 0

Khi đó f(x)=0 có hai nghiệm phân biệt x1, xx2 thỏa mãn (x1 - 1)(xx2-1) < 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy tập hợp các giá trị m thỏa mãn yêu cầu đề bài là m = (0; +∞)

Câu 2: Phương trình hoành độ giao điểm x3 - 3x2 + (m - 1)x + 1 = x + 1 (1) ⇔ x(x2 - 3x + m - 2) = 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

(Cm) cắt trục hoành tại ba điểm phân biệt ⇔ (1) có ba nghiệm phân biệt ⇔ (2) có hai nghiệm phân biệt khác 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đặt B(x1; x1 + 1); C(xx2; xx2 + 1) với x1, xx2 là hai nghiệm của cuả phương trình (2)

Theo định lí Vi ét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ 9 - 4(m - 2) = 5 ⇔ m = 3 (thỏa mãn)

Vậy giá trị m cần tìm là m = 3

Câu 3: Phương trình hoành độ giao điểm của (C) và d: (2x + 1)/(x + 1) = kx + 2k + 1 (1)

Điều kiện xác định x ≠ -1

Khi đó phương trình (1) ⇔ 2x + 1 = (x + 1)(kx + 2k + 1 )

⇔ kx2+(3k - 1)x + 2k = 0 (2) d cắt (C) tại hai điểm A, B phân biệt ⇔ (2) có hai nghiệm phân biệt khác -1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó đặt A(x1; kx1 + 2k + 1);B(xx2; kxx2 + 2k + 1) với x1, xx2 là hai nghiệm của cuả phương trình (2)

Theo định lí Vi ét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ta có d(A; Ox) = d(B; Ox) ⇔ |kx1 + 2k + 1| = |kxx2 + 2k + 1|

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ k(x1+ xx2) + 4k + 2 = 0 ⇔ k = -3

Vậy k = -3 thỏa mãn yêu cầu bài toán

Câu 4: Phương trình hoành độ giao điểm của (C) và d: (2x + 1)/(x + 1) = -2x + m (1)

Điều kiện xác định x ≠ -1

Khi đó phương trình (1) ⇔ 2x + 1 = (x + 1)(-2x + m )

⇔ 2x2 + (4 - m)x + 1 - m = 0 (2) d cắt (C) tại hai điểm A, B phân biệt ⇔ (2) có hai nghiệm phân biệt khác -1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Suy ra d luôn cắt (C) tại hai điểm A, B phân biệt với mọi m.

Gọi A(x1,y1 ),B(xx2,yx2 ) trong đó y1 = -2x1 + m; yx2 = -2xx2 + m và x1, xx2 là các nghiệm của (2).

Theo định lí Vi ét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Tính được : Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy các giá trị m cần tìm là m = 2; m = -2

Câu 5: Phương trình hoành độ giao điểm (x - 3)/(x + 1) = x - 2m (x ≠ -1)

⇔ x - 3 = (x - 2m)(x + 1) ⇔ x2 - 2mx - 2m + 3 = 0 (*)

Yêu cầu bài toán ⇔ phương trình (*) có hai nghiệm dương phân biệt

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy giá trị tham số m cần tìm là 1 < m < 3/2

Câu 6: Do A, B đối xứng qua O nên đường thẳng d phải đi qua O tức là 3n - 9 = 0⇔ n = 3

Khi đó phương trình đường thẳng d viết được dưới dạng y = mx

Phương trình hoành độ giao điểm của (H) và d:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Để d cắt (H) tại hai điểm phân biệt A, B thì phương trình f(x)=0 phải có hai nghiệm phân biệt x1,xx2 khác 1.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Mặt khác do A, B đối xứng qua O nên ta có x1+xx2=0⇔ (m + 3)/m = 0⇔ m = -3(loại)

Vậy không có giá trị nào của m thỏa mãn yêu cầu bài toán.

Câu 7: Phương trình hoành độ giao điểm của d và (Cm ):

x3 + 3x2 + mx - 3 = x - m ⇔ x3 + 3x2 + (m - 1)x + m - 3 = 0

⇔ (x + 1)(x2 + 2x + m - 3) = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Để d cắt (Cm ) tại ba điểm phân biệt thì phương trình f(x)=0 có hai nghiệm phân biệt x1,xx2 khác -1 (ta đặt x1 = -1)

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Theo định lí Vi ét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Do đó T = 2(x12 + xx22 + xx32) + 3x12xx22xx32 - 5 = 2(1 + xx22 + xx32 ) + 3xx22xx32 - 5

= 2 + 2[(xx2 + xx3)2 - 2xx2xx3] + 3xx22xx32-5 = 2 + 2[4 - 2(m - 3)] + 3(m - 3)2 - 5

= 3m2 - 22m + 44 = 3(m - 11/3)2 + 11/3 ≥ 11/3

Dấu bằng xảy ra khi m = 11/3. Vậy ta có min⁡T = 11/3 và m = 11/3 là giá trị cần tìm.

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


tuong-giao-cua-do-thi-ham-so.jsp


Các loạt bài lớp 12 khác