Bài tập Tìm tham số m để hàm số đạt cực trị tại một điểm - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Cực trị của hàm số

Bài tập Tìm tham số m để hàm số đạt cực trị tại một điểm

Bài 1. Cho hàm số: y = 1/3 x3 - mx2 +(m2 - m + 1)x + 1. Với giá trị nào của m thì hàm số đạt cực đại tại điểm x = 1

TXĐ: D = R

Ta có: y' = x2 - 2mx + m2 - m + 1, y'' = 2x - 2m

Điều kiện cần: y'(1) = 0 ⇔ m2 - 3m + 2 = 0 ⇔ m = 1 hoặc m = 2

Điều kiện đủ:

Với m = 1 thì y''(1) = 0 ⇒ hàm số không thể có cực trị.

Với m = 2 thì y''(1) = -2 < 0 ⇒ hàm số có cực đại tại x = 1 .

Vậy m = 2 là giá trị cần tìm.

Bài 2. Cho hàm số y = 1/3 x3 + (m2 - m + 2) x2 + (3m2 + 1)x + m - 5. Tìm m để hàm số đạt cực tiểu tại x = -2 .

      ♦ Tập xác định: D = R

      ♦ Đạo hàm: y' = x2 + 2(m2 - m + 2)x + 3m2 + 1

Điều kiện cần:

Hàm số đạt cực tiểu tại x = -2 ⇒ y'(-2) = 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Điều kiện đủ:

Với m = 1, ta có: y' = x2 + 4x + 4, y' = 0 ⇔ x = -2

Lập BBT ta suy ra m = 1 không thỏa.

Với m = 3, ta có: y' = x2 + 16x + 28, y' = 0 ⇔Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Lập BBT ta thấy hàm số đạt cực tiểu tại x = -2.

      ♦ Vậy giá trị m cần tìm là m = 3.

Bài 3. Cho hàm số y = 1/3 x3 - (m+1) x2 + (m2 + 2m)x + 1 (m là tham số). Tìm tất cả tham số thực m để hàm số đạt cực tiểu tại x = 2.

Tập xác định D = R.

Tính y' = x2 –2(m + 1)x + m2 + 2m; y'' = 2x – 2m - 2.

Để hàm số đã cho đạt cực tiểu tại x = 2 Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy m = 0 là giá trị cần tìm.

Bài 4. Tìm tất cả tham số thực m để hàm số y = (m-1)x4 - (m2 - 2) x2 + 2016 đạt cực tiểu tại

x = -1.

Tập xác định D = R.

Tính y' = 4(m - 1)x3 – 2(m2 - 2)x; y'' = 12(m - 1)x2 – 2m2 + 4.

Để hàm số đã cho đạt cực đại tại x = -1 Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp ánToán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Vậy m = 2 là giá trị cần tìm.

Bài 5. Tìm giá trị của tham số m để hàm số y = x3/3 +(2m - 1)x2 + (m - 9)x + 1 đạt cực tiểu tại

x = 2 .

Ta có : y' = x2 + 2(2m - 1)x + m - 9.

Điều kiện cần để hàm số đạt cực tiểu tại x = 2 là

y'(2) = 0 ⇒ 4 + 4(2m - 1) + m - 9 = 0 ⇒ m = 1.

Kiểm tra lại . Ta có y'' = 2x + 2(2m - 1).

Khi m = 1 thì y'' = 2x + 2, suy ra y''(2) = 6 > 0. Do đó hàm số đạt cực tiểu tại x = 2

Vậy hàm số đạt cực tiểu tại x = 2 ⇔ m = 1.

Bài 6. Tìm giá trị của tham số m để hàm số y = mx3 + 2(m - 1)x2 - (m + 2)x + m đạt cực tiểu tại x = 1 .

Ta có: y' = 3mx2 + 4(m - 1)x - m - 2,y'' = 6mx + 4(m - 1)

Hàm số đạt cực tiểu tại x = 1 ⇒ y'(1) = 0 ⇔ 6m - 6 = 0 ⇔ m = 1

Khi đó y''(1) = 10m - 4 = 6 > 0 ⇒ hàm số đạt cực tiểu tại x = 1.

Vậy m = 1 là giá trị cần tìm.

Bài 7. Tìm giá trị của tham số m để hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đạt cực tiểu tại x = 1.

Ta có: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Cách 1: Vì hàm số có đạo hàm tại mọi điểm x ≠ -m nên để hàm đạt cực tiểu tại x = 1 thì trước hết y'(1) = 1 - 1/((1 + m)2 ) = 0 ⇔ m = 0; m = -2.

      * m = 0 ⇒ y''(1) = 1 > 0 ⇒ x = 1 là điểm cực tiểu ⇒m = 0 thỏa yêu cầu bài toán.

      * m = -2 ⇒ y'(1) = -1 < 0 ⇒ x = 1 là điểm cực đại ⇒ m = -2 không thỏa yêu cầu bài toán.

Cách 2: Bài toán khẳng định được y''(1) ≠ 0 nên ta có thể trình bày:

Hàm số đạt cực tiểu tại x = 1 ⇔Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 8. Tìm giá trị của tham số m để hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đạt cực đại tại x = -1.

Ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hàm số đạt cực đại tại x = -1 ⇒ y'(-1) = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ m2 - m - 2 = 0 ⇔ m = -1, m = 2.

      • m = -1 ⇒ y''(-1) = -1 < 0 ⇒ x = -1 là điểm cực đại

      • m = 2 ⇒ y''(-1) = 2 > 0 ⇒ x = -1 là điểm cực tiểu.

Vậy m = -1 là giá trị cần tìm.

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


cuc-tri-cua-ham-so.jsp


Các loạt bài lớp 12 khác