Bài tập Xét tính đơn điệu của hàm số - Bài tập đầy đủ các dạng có đáp án
Chuyên đề: Tính đơn điệu của hàm số
Bài tập Xét tính đơn điệu của hàm số
Bài 1: Xét tính đồng biến và nghịch biến của hàm số sau y = y= -x3 + 6x2 - 9x + 4
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
Bài 2: Xét tính đồng biến và nghịch biến của hàm số sau y = (3 - 2x)/(x + 7)
Hàm số đã cho xác định và liên tục trên: D = R\{-7}.
Tính y' = > 0,∀x ∈ D = R\{-7}.
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đã cho luôn nghịch biến trên: (-∞; -7)và(-7; +∞).
Bài 3: Xét tính đồng biến và nghịch biến của hàm số sau y = x4 + 4x + 6
Tập xác định: D = R.
Tính: y' = 4x3 + 4. Cho y' = 0 ⇔ 4x3 + 4 = 0 ⇔ x = -1.
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đồng biến trên khoảng (-1; +∞).
Hàm số nghịch biến trên khoảng (-∞; -1)
Bài 4: Xét tính đồng biến và nghịch biến của hàm số sau y =
Hàm số đã cho xác định khi: x2 - x + 3 > 0 đúng ∀x ∈ R.
Hàm số đã cho xác định trên D = R
Ta có: y' =
Cho y' = 0 ⇔ = 0 ⇔-5x + 8 = 0 ⇔ x = 8/5.
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đã cho đồng biến trên(-∞; 8/5).
Hàm số nghịch biến trên khoảng (8/5; +∞)
Bài 5: Xét tính đồng biến và nghịch biến của hàm số sau y =
Hàm số đã cho xác định trên: D = R\{-2}.
Ta có: y' = ,∀x ∈ D.
Cho y' = 0 ⇔ = 0 ⇔ -x2 - 4x + 5 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số nghịch biến trên: (-∞; -5) và (1; +∞)
Hàm số đồng biến trên các khoảng (-5; -2) và (-2; 1)
Bài 6: Xét tính đồng biến và nghịch biến của hàm số sau y =
Hàm số đã cho xác định trên D = R.
Ta có: y' =
Cho y' = 0 ⇔ = 0 ⇔ -36x2 + 24x - 3 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đã cho đồng biến trên (-∞; 1/6) và (1/6; +∞)
Hàm số nghịch biến trên khoảng (1/6; 1/2)
Bài 7: Xét tính đồng biến và nghịch biến của hàm số sau y = |x2 - 2x - 3|
Ta có: y = |x2 - 2x - 3| =
TXĐ: D = R.
Tìm y' =
Hàm số không có đạo hàm tại x= -1 và x = 3.
Ta lại có: Trên khoảng (-1; 3): y' = 0 ⇔ x = 1.
Trên khoảng (-∞; -1): y' < 0. Trên khoảng (3; +∞): .y' > 0
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đồng biến trong các khoảng (-1; 1) và (3; +∞).
Hàm số nghịch biến trên các khoảng (-∞; -1) và (1; 3)
Bài 8: Xét tính đồng biến và nghịch biến của hàm số sau y = 2sinx + cos2x,x ∈ [0; π]
Hàm số đã cho xác định trên đoạn [0; π].
Ta có: y' = 2cosx - 2sin2x = 2cosx - 4cosx.sinx = 2cosx(1 - 2sinx),x ∈ [0; π].
Trên đoạn[0; π]: y' = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đồng biến trên các khoảng (0; π/6) và (π/2; 5π/6)
Hàm số nghịch biến trên các khoảng (π/6; π/2); (5π/6; π)
Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:
- Dạng 1: Xét tính đơn điệu của hàm số
- Bài tập Xét tính đơn điệu của hàm số
- Trắc nghiệm Xét tính đơn điệu của hàm số
- Dạng 2: Tìm tham số m để hàm số đơn điệu
- Bài tập Tìm tham số m để hàm số đơn điệu
- Trắc nghiệm Tìm tham số m để hàm số đơn điệu
- Dạng 3: Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số
- Bài tập Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số
- Trắc nghiệm Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số
- Dạng 4: Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l
- Bài tập Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l
- Trắc nghiệm Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l
Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.
Tải App cho Android hoặc Tải App cho iPhone
Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 12
- Soạn Văn 12 (bản ngắn nhất)
- Văn mẫu lớp 12
- Giải bài tập Toán 12
- Giải BT Toán 12 nâng cao (250 bài)
- Bài tập trắc nghiệm Giải tích 12 (100 đề)
- Bài tập trắc nghiệm Hình học 12 (100 đề)
- Giải bài tập Vật lý 12
- Giải BT Vật Lí 12 nâng cao (360 bài)
- Chuyên đề: Lý thuyết - Bài tập Vật Lý 12 (có đáp án)
- Bài tập trắc nghiệm Vật Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Lí (18 đề)
- Giải bài tập Hóa học 12
- Giải bài tập Hóa học 12 nâng cao
- Bài tập trắc nghiệm Hóa 12 (80 đề)
- Luyện thi đại học trắc nghiệm môn Hóa (18 đề)
- Giải bài tập Sinh học 12
- Giải bài tập Sinh 12 (ngắn nhất)
- Chuyên đề Sinh học 12
- Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)
- Ôn thi đại học môn Sinh (theo chuyên đề)
- Luyện thi đại học trắc nghiệm môn Sinh (18 đề)
- Giải bài tập Địa Lí 12
- Giải bài tập Địa Lí 12 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 12
- Bài tập trắc nghiệm Địa Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Địa (20 đề)
- Giải bài tập Tiếng anh 12
- Giải bài tập Tiếng anh 12 thí điểm
- Giải bài tập Lịch sử 12
- Giải tập bản đồ Lịch sử 12
- Bài tập trắc nghiệm Lịch Sử 12
- Luyện thi đại học trắc nghiệm môn Sử (20 đề)
- Giải bài tập Tin học 12
- Giải bài tập GDCD 12
- Giải bài tập GDCD 12 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 12 (37 đề)
- Luyện thi đại học trắc nghiệm môn GDCD (20 đề)
- Giải bài tập Công nghệ 12