Trắc nghiệm giải bất phương trình logarit bằng cách đưa về cùng cơ số (P2) - Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Bất phương trình logarit

Trắc nghiệm giải bất phương trình logarit bằng cách đưa về cùng cơ số (P2)

Bài 1: Bất phương trình sau tương đương với bất phương trình nào sau đây?

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đáp án : B

Giải thích :

Điều kiện: 0 < x < 1.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 2: Giải bất phương trình log3(3x-2) ≥ 2log9(2x-1), ta được tập nghiệm là

A. (-∞;1).        B. (1;+∞).        C. (-∞;1].        D. [1;+∞).

Đáp án : D

Giải thích :

Điều kiện: x > 2/3.

Ta có: log3(3x-2) ≥ 2log9(2x-1) ⇔ 3x-2 ≥ 2x-1 ⇔ x ≥ 1 (Thỏa điều kiện)

Bài 3: Tất cả các giá trị của m để bất phương trình log2(7x2+7) ≥ log2(mx2+4x+m) có nghiệm đúng với mọi giá trị của x là

A. m ≤ 5.        B. 2 < m ≤ 5.        C. m ≥ 7.        D. 2 ≤ m ≤ 5.

Đáp án : B

Giải thích :

Yêu cầu bài toán

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 4: Có bao nhiêu số nguyên dương x thỏa mãn điều kiện log(x-40)+log(60-x) < 2?

A. 20.        B. 18.        C. 21.        D. 19.

Đáp án : B

Giải thích :

Điều kiện: 40 < x < 60.

Ta có: log(x-40)+log(60-x) < 2 ⇔ log[(x-40)(60-x)] < 2 ⇔ (x-40)(60-x) < 100

⇔ -x2+100x-2500 < 0 ⇔ x ≠ 50.

Giao với điều kiện ta được tập nghiệm S=(40;60)\{50} ⇒ bất phương trình có 18 nghiệm nguyên.

Bài 5: Tìm tập nghiệm của bất phương trình log2(x-3)+log2x ≥ 2.

A. (3;+∞).        B. (-∞;-1]∪[4;+∞).        C. [4;+∞).        D. (3;4].

Đáp án : C

Giải thích :

Điều kiện: x > 3.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Giao với điều kiện ta đươc: x ≥ 4.

Bài 6: Tập nghiệm của bất phương trình 2log2(x-1) ≤ log2(5-x)+1 là

A. (1;5).        B. [1;3].        C. (1;3].        D. [3;5].

Đáp án :C

Giải thích :

Điều kiện: 1 < x < 5.

Ta có: 2log2(x-1) ≤ log2(5-x)+1 ⇔ log2(x-1)2 ≤ log2(10-2x) ⇔ (x-1)2 ≤ 10-2x <

⇔ x2-9 ≤ 0 ⇔ -3 ≤ x ≤ 3.

Giao với điều kiện ta được: 1 < x ≤ 3.

Bài 7: Bất phương trình ssau là

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

A. [3/4;+∞).        B. (3/4;+∞).        C. (3/4;3].        D. [3/4;3].

Đáp án : C

Giải thích :

Điều kiện: x > 3/4.

Ta có: 2log3(4x-3)+log(1/3)(2x+3) ≤ 2 ⇔ log3(4x-3)2 ≤ log3(2x+3)+log39

⇔ log3(4x-3)2 ≤ log3(18x+27) ⇔ (4x-3)2 ≤ 18x+27 ⇔ 16x2-42x-18 ≤ 0 ⇔ -3/8 ≤ x ≤ 3.

Giao với điều kiện ta được: 3/4 < x ≤ 3.

Bài 8: Bất phương trình log2x+log3x+log4x > log20x có tập nghiệm là

A. [1;+∞).        B. (0;1].        C. (0;1).        D. (1;+∞).

Đáp án : D

Giải thích :

Điều kiện: x > 0.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 9: Tập nghiệm của bất phương trình log2(x+2)-log2(x-2) < 2

A. (10/3;+∞).        B. (-2;+∞).

C. (2;+∞).        D. (-2;2).

Đáp án : A

Giải thích :

Điều kiện: x > 2.

Ta có: log2(x+2)-log2(x-2) < 2 ⇔ log2(x+2) < log2(x-2)+log24 ⇔ (x+2) < 4(x-2) ⇔ x > 10/3

Giao với điều kiện ta được: x > 10/3.

Bài 10: Tập nghiệm của bất phương trình log(x2+2x-3)+log(x+3)-log(x-1) < 0.

A. (-4;-2)∪(1;+∞).        B. (-2;1).        C. (1;+∞).        D. ∅.

Đáp án : D

Giải thích :

Điều kiện: x > 1.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Giao điều kiện ta thấy bất phương trình vô nghiệm.

Bài 11: Bất phương trình sau có tập nghiệm là

A. (2,+∞).        B. (2,3].        C. (2,5/2].        D. [5/2,3].

Đáp án : C

Giải thích :

Điều kiện: x > 2.

log2(2x-1)-log(1/2) (x-2) ≤ 1 ⇔ log2(2x-1)+log2(x-2) ≤ 1

⇔ log2[(2x-1)(x-2)] ≤ 1

⇔ (2x-1)(x-2) ≤ 2 ⇔ 0 ≤ x ≤ 5/2.

Giao với điều kiện ta được: 2 < x ≤ 5/2.

Bài 12: Tìm tập nghiệm S của bất phương trình sau

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

A. S=(2;+∞).        B. S=(1;2).        C. S=(0;2).        D. S=(1;2].

Đáp án : B

Giải thích :

Điều kiện: x > 1.

Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Giao với điều kiện ta được: 1 < x < 2.

Bài 13: Cho bất phương trình log0,2x-log5(x-2) < log0,23. Nghiệm của bất phương trình đã cho là

A. x > 3.        B. 2 ≤ x < 3.        C. x ≥ 2.        D. 2 < x < 3.

Đáp án : A

Giải thích :

Điều kiện: x > 2.

Ta có: log0,2x-log5(x-2) < log0,23 ⇔ -log5x-log5(x-2)< -log53

⇔ log5x+log5(x-2) > log53 ⇔ log5[x(x-2)] > log53 ⇔ x(x-2) > 3 ⇔ x2-2x-3 > 0

x < -1 ∨ x > 3.

Kết hợp điều kiện ta được: x > 3.

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bat-phuong-trinh-logarit.jsp


Các loạt bài lớp 12 khác