Chứng minh với mọi n thuộc N sao, (1 + căn bậc hai 2)^n, (1- căn bậc hai 2)^n

Giải Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học

Luyện tập 2 trang 26 Chuyên đề Toán 10: Chứng minh với mọi n ∈ ℕ*,(1+2)n, (12)n lần lượt viết được ở dạng an+bn2,anbn2 , trong đó an, bn là các số nguyên dương.

Quảng cáo

Lời giải:

+) Khi n = 1, ta có:

 (1+2)1=1+2=1+1.2a1 = 1, b1 = 1.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (1+2)k+1 viết được dưới dạng ak+1+bk+12, trong đó ak + 1, bk + 1 là các số nguyên dương.

Thật vậy, theo giả thiết quy nạp ta có:

(1+2)k = ak+bk2, với ak, bk là các số nguyên dương.

Khi đó:

Chứng minh với mọi n thuộc N sao, (1 + căn bậc hai 2)^n, (1- căn bậc hai 2)^n (ảnh 1)

Vì ak, bk là các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ∈ ℕ*.

+) Theo chứng minh trên ta có:

Với mọi n ∈ ℕ* thì (1+2)nanbn2  với an, bn là các số nguyên dương.

Chứng minh tương tự ta được:

Với mọi n ∈ ℕ* thì (12)n = cndn2 với cn, dn là các số nguyên dương.

Giờ ta chứng minh an = cn và bn = dn với mọi n  ℕ*.

Cách 1:

Xét mệnh đề P(n): an = cn và bn = dn với mọi n ∈ ℕ*.

+) Khi n = 1, ta có:

(1+2)1=1+2=1+1.2 a1 = 1, b1 = 1.

(12)1=12=11.2 c1 = 1, d1 = 1.

Vậy a1 = c1, b1 = d1.

Vậy mệnh đề P(n) đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề P(n) cũng đúng với k + 1, tức là: ak + 1 = ck + 1 và bk + 1 = dk + 1.

Thật vậy, theo giả thiết quy nạp ta có: ak = ck và bk = dk (1).

Mặt khác:

Chứng minh với mọi n thuộc N sao, (1 + căn bậc hai 2)^n, (1- căn bậc hai 2)^n (ảnh 1)

 ak + 1 = ak + 2bk, bk + 1 = ak + bk (2).

Chứng minh với mọi n thuộc N sao, (1 + căn bậc hai 2)^n, (1- căn bậc hai 2)^n (ảnh 1)

nên ck + 1 = ck + 2dk, dk + 1 = ck + dk (3)

Từ (1), (2) và (3) ta suy ra ak + 1 = ck + 1 và bk + 1 = dk + 1.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ∈ ℕ*.

Vậy bài toán đã được chứng minh.

Cách 2:

Ta có:

(1+2)n12n=1+212n=1n

Chứng minh với mọi n thuộc N sao, (1 + căn bậc hai 2)^n, (1- căn bậc hai 2)^n (ảnh 1)

Từ (2) ta suy ra andn=bncnancn=bndn=k với k > 0 (vì an, bn, cn, dlà các số nguyên dương)

an=kcn,bn=kdn. Thế vào (1) ta được:

kcncn2kdndn=1nkcn22dn2=1n

1    kk=1an = cn và bn = dn.

Vậy ta có điều phải chứng minh.

Quảng cáo


Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên