Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải Chuyên đề Toán 11 Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản - Kết nối tri thức

Bài 2.16 trang 49 Chuyên đề Toán 11: Tìm đường đi ngắn nhất từ đỉnh S đến  mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.

Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Quảng cáo

Lời giải:

Đầu tiên ta gắn nhãn đỉnh S là I(S) = 0 và gắn cho ba đỉnh kề với S là A, B và C các nhãn tạm thời là I(S) + 2, I(S) + 1 và I(S) + 7. Chọn số nhỏ nhất trong chúng và viết I(B) = 1. Đỉnh B bây giờ được gắn nhãn vĩnh viễn là 1.

Tiếp theo ta gắn nhãn cho các đỉnh kề với B là A, C, D, E và F các nhãn tạm thời là I(B) + 6 (hiện A có 2 nhãn tạm thời là 2 và 7), I(B) + 5 (hiện C có hai nhãn tạm thời là 7 và 6), I(B) + 12, I(B) + 15, I(B) + 9. Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại A, C, D, E, F) hiện nay là 2 (tại A), nên ta viết I(A) = 2. Điểm A được gắn nhãn vĩnh viễn là 2.

Bây giờ ta xét các đỉnh kề với A mà chưa được gắn nhãn vĩnh viễn là D và E. Ta gắn cho đỉnh D nhãn tạm thời I(A) + 5 (hiện D có hai nhãn tạm thời là 13 và 7), gắn cho đỉnh E nhãn tạm thời I(A) + 8 (hiện E có hai nhãn tạm thời là 16 và 10). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại D và E) là 7 (tại D), nên ta viết I(D) = 7. Đỉnh D được gắn nhãn vĩnh viễn là 7.

Ta xét đỉnh E (chưa được gắn nhãn vĩnh viễn) kề với D, ta gắn nhãn tạm thời I(D) + 2 (hiện E có ba nhãn tạm thời là 16, 10 và 9). Vậy đỉnh E sẽ được gắn nhãn vĩnh viễn là 9 hay I(E) = 9.

Tiếp tục ta xét các đỉnh kề với E mà chưa được gắn nhãn vĩnh viễn là C và F. Ta gắn cho đỉnh C nhãn tạm thời I(E) + 10 (hiện C có ba nhãn tạm thời là 7, 6 và 19), gắn cho F nhãn tạm thời I(E) + 6 (hiện F có hai nhãn tạm thời là 10 và 15). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (ở C, F) hiện nay là 6 (tại C), nên ta viết I(C) = 6. Đỉnh C được gắn nhãn vĩnh viễn là 6.

Xét đỉnh kề với C là F, ta gắn cho F nhãn tạm thời I(C) + 14 (hiện F có ba nhãn tạm thời là 10, 15 và 20) nên I(F) = 10. Đỉnh F được gắn nhãn vĩnh viễn là 10.

Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Vậy, đường đi ngắn nhất từ đỉnh S đến đỉnh A là SA = 2.

Đường đi ngắn nhất từ đỉnh S đến đỉnh B là SB = 1.

Đường đi ngắn nhất từ đỉnh S đến đỉnh C có độ dài là I(C) = 6 và có đường đi là

S → B → C.

Đường đi ngắn nhất từ đỉnh S đến đỉnh D có độ dài là I(D) = 7 và đường đi là

S → A → D.

Đường đi ngắn nhất từ đỉnh S đến đỉnh E có độ dài là I(E) = 9 và đường đi là

S → A → D → E.

Đường đi ngắn nhất từ đỉnh S đến đỉnh F có độ dài là I(F) = 10 và đường đi là

S → B → F.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 11 Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

Săn SALE shopee Tết:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên