Giải SBT Toán 10 trang 39 Tập 2 Cánh diều

Với giải Sách bài tập Toán 10 trang 39 Tập 2 trong Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm SBT Toán 10 Cánh diều Tập 2 hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 39.

Giải SBT Toán 10 trang 39 Tập 2 Cánh diều

Bài 19 trang 39 SBT Toán 10 Tập 2: Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng (đường nét liền) và Hoàng (đường nét đứt đậm) qua 9 lần kiểm tra.

Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

a) Viết mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng và Hoàng nhận được từ biểu đồ ở Hình 4.

b) Tìm khoảng biến thiên và khoảng tứ phân vị của mỗi mẫu số liệu đó.

c) Tính phương sai và độ lệch chuẩn của hai mẫu số liệu đó. Cho biết kết quả thi của bạn nào ổn định hơn?

Quảng cáo

Lời giải:

a) Mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng là:

8 9 7 9 7 8 8 7 9 (1)

Mẫu số liệu thống kê kết quả thi ngoại ngữ của Hoàng là:

6 10 8 8 7 9 6 9 8 (2)

b) Xét mẫu số liệu (1):

⦁ Trong mẫu số liệu (1), số điểm lớn nhất là 9 và số điểm thấp nhất là 7.

Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 9 – 7 = 2.

⦁ Sắp xếp mẫu số liệu (1) theo thứ tự không giảm, ta được dãy:

7 7 7 8 8 8 9 9 9

Trung vị của mẫu số liệu trên là: 8.

Trung vị của dãy 7; 7; 7; 8 là: 7+72= 7.

Trung vị của dãy 8; 9; 9; 9 là: 9+92= 9.

Vì vậy Q1 = 7; Q2 = 8; Q3 = 9.

Do đó khoảng tứ phân vị của mẫu số liệu (1) là: ∆Q = Q3 – Q1 = 9 – 7 = 2.

Xét mẫu số liệu (2):

⦁ Trong mẫu số liệu (2), số điểm lớn nhất là 10 và số điểm thấp nhất là 6.

Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 10 – 6 = 4.

⦁ Sắp xếp mẫu số liệu (2) theo thứ tự không giảm, ta được dãy:

6 6 7 8 8 8 9 9 10

Trung vị của mẫu số liệu trên là: 8.

Trung vị của dãy 6; 6; 7; 8 là: 6+72= 6,5.

Trung vị của dãy 8; 9; 9; 10 là: 9+92=9.

Vì vậy Q1 = 6,5; Q2 = 8; Q3 = 9.

Do đó khoảng tứ phân vị của mẫu số liệu (2) là: ∆Q = Q3 – Q1 = 9 – 6,5 = 2,5.

Vậy ta có:

⦁ Khoảng biến thiên của mẫu số liệu (1) và (2) lần lượt là 2 và 4.

⦁ Khoảng tứ phân vị của mẫu số liệu (1) và (2) lần lượt là 2 và 2,5.

c) Gọi kết quả trung bình của bạn Dũng và bạn Hoàng lần lượt là x¯D, x¯H. Ta có:

x¯D=7.3+8.3+9.39=8 (điểm).

x¯H=6.2+7+8.3+9.2+109=719 (điểm).

Gọi phương sai tương ứng với mẫu số liệu (1) và (2) lần lượt là sD2, sH2. Ta có:

sD2=3.782+3.882+3.9829=23.

Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

Độ lệch chuẩn của mẫu số liệu (1) là: sD=sD2=23=63.

Độ lệch chuẩn của mẫu số liệu (2) là: sH=sH2=13481=1349.

Do sD2=23<sH2=13481.

Nên bạn Dũng có kết quả thi ổn định hơn bạn Hoàng.

Quảng cáo


Lời giải sách bài tập Toán lớp 10 Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên