Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc
Giải sách bài tập Toán 11 Bài 23: Đường thẳng vuông góc với mặt phẳng - Kết nối tri thức
Bài 7.7 trang 28 SBT Toán 11 Tập 2: Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Gọi H là chân đường vuông góc hạ từ O đến mặt phẳng (ABC). Chứng minh rằng:
a) BC (OAH);
b) H là trực tâm của tam giác ABC;
c) .
Lời giải:
a) Vì OA OB, OA OC nên OA (OBC). Suy ra OA BC.
Mà OH (ABC) nên OH BC. Do đó BC (OAH).
b) Vì BC (OAH) nên BC AH, do đó AH là đường cao của tam giác ABC. (1)
Có OH (ABC) nên OH AC.
Có OB OA, OC OB nên OB (OAC) nên OB AC mà OH AC, từ đó suy ra AC (OBH), suy ra CA BH, do đó BH là đường cao của tam giác ABC. (2)
Từ (1) và (2) suy ra H là giao hai đường cao của tam giác ABC.
Do đó H là trực tâm của tam giác ABC.
c) Gọi K là giao điểm của AH với BC.
Vì OA (OBC) nên OA OK .
Xét tam giác OAK vuông tại O, có OH là đường cao nên .
Vì AK BC mà OA BC nên BC (OAK), suy ra OK BC.
Xét tam giác OBC vuông tại O, có OK là đường cao nên .
Do đó .
Lời giải SBT Toán 11 Bài 23: Đường thẳng vuông góc với mặt phẳng hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
Săn SALE shopee Tết:
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT