Giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C
Giải SBT Toán 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 9.22 trang 58 sách bài tập Toán lớp 7 Tập 2:
a) Giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Chứng minh AC > AB.
b) Hỏi đảo lại có đúng không tức là nếu tam giác ABC có AC > AB thì đường trung trực d của cạnh BC có cắt AC tại điểm nằm giữa A và C không?
c) Vẫn giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Với M là một điểm tùy ý thuộc d, M khác D, hãy chứng minh MA + MB > DA + DB.
Lời giải:
a) Nếu đường trung trực d của cạnh BC cắt cạnh AC tại điểm D nằm giữa A và C thì ta có DB = DC (do D nằm trên đường trung trực của canh BC thì sẽ cách đều hai đầu mút).
Từ đó ta có: AC = AD + DC = AD + DB (1)
Trong tam giác ABD, theo bất đẳng thức tam giác, ta có: AD + DB > AB (2)
Vậy từ (1) và (2) ta suy ra được: AC > AB (đpcm).
b) Điều đảo lại cũng hoàn toàn đúng. Thật vậy,
Đường trung trưc của BC không thể đi qua A vì nếu thế thì AB = AC (trái với giải thiết)
Vậy nên đường trung trực d phải cắt đoạn thẳng AB tại điểm nằm giữa A và B.
Để đường trung trực d phải cắt đoạn thẳng AB tại điểm nằm giữa A và B thì chứng minh tương tự câu a) ta dễ dàng suy ra được AB > AC (trái với giả thiết)
Và đường trung trực d phải cắt đoạn thẳng AC tại điểm nằm giữa A và C
Để đường trung trực d phải cắt đoạn thẳng AC tại điểm nằm giữa A và C thì chứng minh tương tự câu a) ta dễ dàng suy ra được AC > AB (đúng với giả thiết)
Vậy suy ra đường trung trực d của cạnh BC cắt AC tại điểm nằm giữa A và C nếu AC > AB.
c) M nằm trên đường trung trực của đoạn thẳng BC nên ta có MB = MC
Suy ra MA + MB = MA + MC (3)
Mà áp dụng bất đẳng thức tam giác vào tam giác MAC ta có MA + MC > AC
Hay MA + MC > AD + DC (4)
Từ (3) và (4) ta suy ra được MA + MB > DA + DC (đpcm).
Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT