Bài 1 trang 113 Toán 11 Tập 1 Cánh diều

Giải Toán 11 Bài 5: Hình lăng trụ và hình hộp - Cánh diều

Bài 1 trang 113 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C D’.

Quảng cáo

a) Chứng minh rằng (ACB’) // (A’C’D).

b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng BG1 = G1G2 = D’G2.

Lời giải:

a)

Bài 1 trang 113 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Ta có: (ABCD) // (A’B’C’D’) ( do ABCD.A’B’C’D’ là hình hộp);

           (ABCD) ∩ (ACC’A’) = AC;

           (A’B’C’D’) ∩ (ACC’A’) = A’C’.

Do đó AC // A’C’.

Mà A’C’ ⊂ (A’C’D) nên AC // (A’C’D).

Chứng minh tương tự ta cũng có AB’ // DC’ mà DC’ ⊂ (A’C’D) nên AB’ // (A’C’D).

Ta có: AC // (A’C’D);

          AB’ // (A’C’D);

          AC, AB’ cắt nhau tại điểm A và cùng nằm trong mp(ACB’).

Do đó (ACB’) // (A’C’D).

b)

Bài 1 trang 113 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Gọi O là tâm hình bình hành đáy ABCD, I là giao điểm của BD’ và DB’.

Tứ giác BDD’B’ có BB’ // DD’ và BB’ = DD’ nên là hình bình hành.

Do đó hai đường chéo BD’ và DB’ cắt nhau tại trung điểm I của mỗi đường.

Trong mp(BDD’B’), BD’ cắt B’O tại G1.

Mà B’O ⊂ (ACB’) nên G1 là giao điểm của BD’ với (ACB’).

Trong mp(BDD’B’), xét BDB’ có hai đường trung tuyến BI, B’O cắt nhau tại G1 nên G1 là trọng tâm của DBDB’

Do đó B'G1BO=23

Trong (ACB’), xét ACB’ có B’O là đường trung tuyến và B'G1BO=23

Suy ra G1 là trọng tâm của ACB’.

• Gọi O’ là tâm hình bình hành đáy A’B’C’D’.

Chứng minh tương tự như trên ta cũng có: G2 là trọng tâm của DD’B’ nên DG2DO'=23

Trong (A’C’D), A’C’D có DO’ là đường trung tuyến và  DG2DO'=23

Suy ra G2 là trọng tâm của A’C’D.

c) Theo chứng minh câu b, ta có:

• G1 là trọng tâm của BDB’ nên BG1BI=23  và IG1BG1=12

• G2 là trọng tâm của  DD’B’ nên D'G2D'I=23  và IG2D'G2=12

Do đó BG1BI=D'G2D'I=23  và IG1BG1=IG2D'G2=12

Ta có: BG1BI=D'G2D'I và BI = D’I (do I là trung điểm của BD’)

Suy ra BG1 = D’G2.

Lại có IG1BG1=IG2D'G2=12  nên IG1 = IG2 = 12 BG1

Do đó G1G2 = IG1 + IG2 = 12 BG1 + 12 BG1 = BG1.

Vậy BG1 = G1G2 = D’G2.

Quảng cáo

Lời giải bài tập Toán 11 Bài 5: Hình lăng trụ và hình hộp hay, chi tiết khác:

Quảng cáo
Quảng cáo

Các bài học để học tốt Toán 11 Bài 5: Hình lăng trụ và hình hộp:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên