Bài 5 trang 99 Toán 11 Tập 2 Cánh diều

Giải Toán 11 Bài 4: Hai mặt phẳng vuông góc - Cánh diều

Bài 5 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:

Quảng cáo

a) SM ⊥ (ABCD);

b) AD ⊥ (SAB);

c) (SAD) ⊥ (SBC).

Lời giải:

Bài 5 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM ⊥ AB.

Do A ∈ (SAB) ∩ (ABCD);

      B ∈ (SAB) ∩ (ABCD).

Suy ra AB = (SAB) ∩ (ABCD).

Ta có: (SAB) ⊥ (ABCD);

           SM ⊂ (SAB), SM ⊥ AB;

           (SAB) ∩ (ABCD) = AB.

Từ đó, ta có SM ⊥ (ABCD).

b) Do SM ⊥ (ABCD) và AD ⊂ (ABCD) nên SM ⊥ AD.

Vì ABCD là hình chữ nhật nên AD ⊥ AB.

Ta có: AD ⊥ AB, AD ⊥ SM và AB ∩ SM = M trong (SAB).

Suy ra AD ⊥ (SAB).

c) Do AD ⊥ (SAB) và SB ⊂ (SAB) nên AD ⊥ SB.

Vì tam giác SAB vuông cân tại S nên SA ⊥ SB.

Ta có: SB ⊥ AD, SB ⊥ SA và AD ∩ SA = A trong (SAD).

Suy ra SB ⊥ (SAD).

Hơn nữa SB ⊂ (SBC) nên (SBC) ⊥ (SAD).

Quảng cáo

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên