Bài 2.4 trang 46 Toán 11 Tập 1 - Kết nối tri thức

Giải Toán 11 Bài 5: Dãy số - Kết nối tri thức

Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) un=n+1n+2 ;

c) un = sin n;

d) un = (– 1)n – 1 n2.

Quảng cáo

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: un=n+1n+2=n+21n+2=11n+2 , với mọi n ∈ ℕ*.

0<1n+213 , ∀ n ∈ ℕ* nên 131n+2<0 ∀ n ∈ ℕ*.

Suy ra 11311n+2<1 hay 23un<1 ∀ n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.

Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.

(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.

n2 ≥ 0 với mọi n ∈ ℕ*.

Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.

           un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.

Vậy dãy số (un) không bị chặn.  

Quảng cáo

Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:

Quảng cáo
Quảng cáo

Các bài học để học tốt Toán 11 Bài 5: Dãy số:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác