Bài 4 trang 20 Toán 12 Tập 1 Cánh diều

Giải Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - Cánh diều

Bài 4 trang 20 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:

Quảng cáo

a) f(x) = x3 - 32x2 trên đoạn [– 1; 2];

b) f(x) = x4 – 2x3 + x2 + 1 trên đoạn [– 1; 1];

c) f(x) = ex(x2 – 5x + 7) trên đoạn [0; 3];

d) f(x) = cos 2x + 2x + 1 trên đoạn -π2;π .

Lời giải:

a) Ta có f'(x) = 3x2 – 3x. Khi đó, trên khoảng (– 1; 2), f'(x) = 0 khi x = 0 hoặc x = 1.

f(– 1) = -52 , f(0) = 0, f(1) = -12 , f(2) = 2.

Vậy max[-1; 2]f(x) = 2 tại x = 2, min[-1; 2]f(x) = -52 tại x = – 1.

b) Ta có f'(x) = 4x3 – 6x2 + 2x. Khi đó, trên khoảng (– 1; 1), f'(x) = 0 khi x = 12 hoặc x = 0.

f(– 1) = 5, f12= 1716 , f(0) = 1, f(1) = 1.

Vậy max[-1; 1]f(x) = 5 tại x = – 1, min[-1; 1]f(x) = 1tại x = 0 hoặc x = 1.

c) Ta có f'(x) = ex(x2 – 5x + 7) + ex(2x – 5) = ex(x2 – 3x + 2) = ex(x – 1)(x – 2).

Khi đó, trên khoảng (0; 3), f'(x) = 0 khi x = 1 hoặc x = 2.

f(0) = 7, f(1) = 3e, f(2) = e2, f(3) = e3.

Vậy max[0; 3]f(x) = e3 tại x = 3, min[0; 3]f(x) = 7 tại x = 0.

d) Ta có f'(x) = – 2sin 2x + 2. Khi đó trên khoảng π2;π, f'(x) = 0 khi x = π4.

fπ2=π, f(π) = 2 + 2π, fπ4=1+π2.

Vậy maxπ2;πfx=2+2π tại x = π, minπ2;πfx=π tại x = π2.

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên