HĐ3 trang 6 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 11: Nguyên hàm - Kết nối tri thức

HĐ3 trang 6 Toán 12 Tập 2: Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

Quảng cáo

a) Chứng minh kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Nêu nhận xét về kfxdxkfxdx.

Lời giải:

a) Vì F(x) là một nguyên hàm của f(x) trên K nên F'(x) = f(x).

Ta cần chứng minh (kF(x))' = kf(x).

Ta có (kF(x))' = k(F(x))' = kf(x).

Vậy kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Vì F(x) là một nguyên hàm của f(x) trên K nên fxdx=Fx+C.

kfxdx=kFx+C'.

Vì C' ta có thể viết lại bằng kC. Tức là C' = kC.

Do đó kfxdx=kFx+kC=kFx+C=kfxdx.

Vậy kfxdx=kfxdx.

Quảng cáo

Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác