Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Giải Vở thực hành Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Bài 3 (4.25) trang 73 vở thực hành Toán lớp 7 Tập 1: Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.

a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.

Quảng cáo

Lời giải:

a)

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Xét hai tam giác ABM và ACM vuông tại đỉnh M và có:

MB = MC (chứng minh trên).

AM là cạnh chung.

Vậy ∆ABM = ∆ACM (hai cạnh góc vuông).

Do đó AB = AC (2 cạnh tương ứng) hay tam giác ABC cân tại A.

b)

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. Giả sử AM vuông góc với BC

Kéo dài AM một đoạn MD sao cho MD = MA.

Hai tam giác MAB và MDC có:

MB = MC (theo giả thiết).

AMB^=DMB^ (hai góc đối đỉnh).

MA = MD (theo cách dựng).

Do đó ∆MAB = ∆MDC (c – g – c). Do đó AB = DC (1).

Mặt khác ∆ACD có CAD^=CAM^=BAM^=CDM^=CDA^

Vậy tam giác ∆ACD cân tại C và do đó AC = CD (2).

Từ (1) và (2) suy ra AB = AC, hay tam giác ABC cân tại A.

Quảng cáo

Xem thêm các bài giải vở thực hành Toán lớp 7 sách Kết nối tri thức hay, chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán lớp 7 hay nhất, chi tiết được biên soạn bám sát sách Vở thực hành Toán 7 Tập 1, Tập 2 bộ sách Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên