Một dãy số bắt đầu bằng số 0, sau đó là số 1 và các số tiếp theo

Giải SBT Tin học 9 Kết nối tri thức Bài 15: Bài toán tin học

Câu 15.4 trang 61 SBT Tin học 9: Một dãy số bắt đầu bằng số 0, sau đó là số 1 và các số tiếp theo đều là tổng của hai số trước đó, được gọi là dãy Fibonacci. Đây là dãy được tìm thấy từ những năm 1200 nhưng lại được đặt theo tên một nhà toán học người Ý, Fibonacci. Hãy phát biểu bài toán tìm số Fibonacci thứ n và tổng n số Fibonacci đầu tiên.

a) Hãy phát biểu bài toán tìm số Fibonacci thứ n và tổng n số Fibonacci đầu tiên.

b) Trình bày thuật toán tìm số Fibonacci thứ n và tổng n số Fibonacci đầu tiên.

Quảng cáo

Lời giải:

Đầu vào: số nguyên dương nnn.

Đầu ra: số Fibonacci thứ nnn và tổng của n số Fibonacci đầu tiên.

Ví dụ:

Đầu vào

Đầu ra

Giải thích

3

2, 4

Những số Fibonacci đầu tiên là 0, 1, 1, 2, 3,...

5

5, 12

Những số Fibonacci đầu tiên là 0, 1, 1, 2, 3,...

b) Thuật toán tính số Fibonacci thứ n và tổng n số Fibonacci đầu tiên có thể được mô tả theo các bước như sau:

Nhập n

Nếu n = 1 thì

   f 0; s 0

còn không thì

   Nếu n = 2 thì

      f 1; s 1

     còn không thì

      a 0; b 1; s 1

      Lặp (n-2) bước

         f a + b; s s + f; a b; b f;

Xuất f, s

Quảng cáo

Lời giải sách bài tập Tin học 9 Bài 15: Bài toán tin học hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Tin học lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Tin 9 Kết nối tri thức của chúng tôi được biên soạn bám sát nội dung sách Bài tập Tin học 9 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác
Tài liệu giáo viên