Giải SBT Toán 10 trang 60 Tập 1 Cánh diều
Với Giải sách bài tập Toán 10 trang 60 Tập 1 trong Bài 5: Hai dạng phương trình quy về phương trình bậc hai SBT Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 60.
Giải SBT Toán 10 trang 60 Tập 1 Cánh diều
Bài 37 trang 60 SBT Toán 10 Tập 1: Trong các phát biểu sau, phát biểu nào đúng ?
A. Tập nghiệm của phương trình là tập nghiệm của phương trình f(x) = [g(x)]2.
B. Tập nghiệm của phương trình là tập nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0.
C. Mọi nghiệm của phương trình f(x) = [g(x)]2 đều là nghiệm của phương trình .
D. Tập nghiệm của phương trình là tập nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình f(x) ≥ 0.
Lời giải:
Đáp án đúng là B.
Tập nghiệm của phương trình là tập nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0.
Bài 38 trang 60 SBT Toán 10 Tập 1: Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = g(x) thỏa mãn một trong hai bất phương trình f(x) ≥ 0 hoặc g(x) ≥ 0 mà không cần kiểm tra thỏa mãn đồng thời cả hai bất phương trình đó để kết luận nghiệm của phương trình .
Lời giải:
Xét phương trình (*)
Điều kiện tồn tại căn thức là: f(x) ≥ 0 hoặc g(x) ≥ 0
Bình phương hai vế của phương trình (*) ta được: f(x) = g(x).
Do đó ta chỉ cần hoặc f(x) ≥ 0 hoặc g(x) ≥ 0 là đủ.
Bài 39 trang 60 SBT Toán 10 Tập 1:Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình .
Lời giải:
Xét (**)
Điều kiện của phương trình gồm:
+) Điều kiện tồn tại của căn thức là f(x) ≥ 0
+) Vì ≥ 0 nên g(x) ≥ 0.
Bình phương 2 vế của phương trình (**) là: f(x) = [g(x)]2 ≥ 0
Do đó trong hai điều kiện ta chỉ cần g(x) ≥ 0.
Bài 40 trang 60 SBT Toán 10 Tập 1: Giải các phương trình sau:
a) ;
b) ;
c) ;
d) .
Lời giải:
a) (1)
Điều kiện – 4x + 4 ≥ 0 ⇔ x ≤ 1
(1) ⇔ – 4x + 4 = – x2 + 1
⇔ x2 – 4x + 3 = 0
⇔ x = 3 (không thỏa mãn) và x = 1 (thỏa mãn)
Vậy nghiệm của phương trình là x = 1.
b)
Điều kiện x2 – 3 ≥ 0 ⇔
(1) ⇔ 3x2 – 6x + 1 = x2 – 3
⇔ 2x2 – 6x + 4 = 0
⇔ x = 2 (thỏa mãn) và x = 1 (không thỏa mãn)
Vậy nghiệm của phương trình là x = 2.
c)
Điều kiện 3x – 4 ≥ 0 ⇔ x ≥
(1) ⇔ 2x – 1 = 9x2 – 24x + 16
⇔ 9x2 – 26x + 17 = 0
⇔ x = 1 (không thỏa mãn) và x = (thỏa mãn)
Vậy nghiệm của phương trình là x = .
d)
Điều kiện x – 3 ≥ 0 ⇔ x ≥ 3
(1) ⇔ – 2x2 + x + 7 = x – 3
⇔ – 2x2 + 10 = 0
⇔ x2 = 5
⇔ x = (không thỏa mãn) và x = (không thỏa mãn)
Vậy nghiệm của phương trình là x ∈ .
Bài 41 trang 60 SBT Toán 10 Tập 1: Giải các phương trình sau:
a) ;
b) .
Lời giải:
a)
⇔
Điều kiện 2 – x ≥ 0 ⇔ x ≤ 2
⇔ 7 – 2x = 4 – 4x + x2
⇔ x2 – 2x – 3 = 0
⇔ x = – 1 (thỏa mãn) hoặc x = 3 (không thỏa mãn)
Vậy phương trình đã cho có nghiệm x = – 1.
b) .
⇔
Điều kiện 7 – 3x ≥ 0 ⇔ x ≤
⇔ – 2x2 + 7x + 1 = 49 – 42x + 9x2
⇔ 11x2 – 49x + 48 = 0
⇔ x = 3 (không thỏa mãn) hoặc x = < (thỏa mãn)
Vậy phương trình đã cho có nghiệm x = .
Bài 42 trang 60 SBT Toán 10 Tập 1: Để leo lên một bức tường, bác Dũng dùng một chiếc thang cao hơn bức tường đó 2m. Ban đầu bác Dũng đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên của bức tường (Hình 21a). Sau đó, bác Dũng dịch chuyển chân thang vào gần bức tường thêm 1m thì bác Dũng nhận thấy thang tạo với mặt đất một góc 45° (Hình 21b). Bức tường cao bao nhiêu mét?
Lời giải:
+) Hình 21a):
Đặt AC = x (m). Khi đó AB = x + 2
Xét tam giác ABC vuông tại C, có AC = x, AB = x + 2
Áp dụng định lí py – ta – go ta được:
AB2 = AC2 + BC2
⇔ (x + 2)2 = x2 + BC2
⇔ BC2 = (x + 2)2 – x2
⇔ BC2 = 4x + 4
⇔ BC =
AC là chiều cao của bức tường nên AC = DG = x.
⇒ DG = BC – 1 = - 1
Xét tam giác DGE vuông tại G, có:
tanE =
⇔ tan45°
⇔ 1
⇔ – 1 = x
⇔ = x + 1 (điều kiện x ≥ – 1)
⇔ x2 + 2x + 1 = 4x + 4
⇔ x2 – 2x – 3 = 0
⇔ x = 3 (thỏa mãn) và x = – 1 (không thỏa mãn)
Vậy bức tường cao 3 m.
Lời giải Sách bài tập Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai Cánh diều hay khác:
Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều