Giải SBT Toán 10 trang 80 Tập 1 Cánh diều

Với Giải sách bài tập Toán 10 trang 80 Tập 1 trong Bài 2: Giải tam giác. Tính diện tích tam giác SBT Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 80.

Giải SBT Toán 10 trang 80 Tập 1 Cánh diều

Bài 17 trang 80 SBT Toán 10 Tập 1: Hai người A và B cùng quan sát một con tàu đang neo đậu ngoài khơi tại vị trí C. Người A đứng trên bờ biển, người B đứng trên một hòn đảo cách bờ một khoảng AB = 100m. Hai người tiến hành đo đạc và thu được kết quả (Hình 22). Hỏi con tàu cách hòn đảo bao xa (làm tròn kết quả đến hàng phần mười theo đơn vị mét)?

 Hai người A và B cùng quan sát một con tàu đang neo đậu ngoài khơi tại vị trí C. Người A đứng trên bờ biển

Quảng cáo

Lời giải:

Xét tam giác ABC, có: A^+B^+C^=180° (định lí tổng ba góc)

C^=180°-(A^+B^)=180°-(54°+74°)=52° .

Áp dụng định lí sin, ta được:

BCsinA=ABsinC

BCsin54°=100sin52° .

Vậy con tàu cách đảo 102, 7 m.

Bài 18 trang 80 SBT Toán 10 Tập 1: Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: AB = 30 m, CAB^=60°,CBA^=50° (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C (làm tròn kết quả đến hàng phần mười theo đơn vị mét).

 Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi

Quảng cáo


Lời giải:

Xét tam giác ABC, có:

A^+B^+C^=1800 (định lí tổng ba góc)

C^=180°-(A^+B^)=180°-(60°+50°)=70° .

Áp dụng định lí sin, ta được:

ABsinC=ACsinB30sin70°=ACsin50°AC=30.sin50°sin70°24,5

Vậy khoảng cách từ vị trí A đến con tàu C là 24,5 m.

Bài 19 trang 80 SBT Toán 10 Tập 1: Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (Hình 24). Cho biết đoạn thẳng AB dài 762 m,

 Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc

a) Tính chiều cao h của con dốc theo đơn vị mét (làm tròn kết quả đến hàng đơn vị).

b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng vận tốc trung bình lên dốc là 4km/h và tốc độ khi xuống dốc là 19 km/h.

Quảng cáo

Lời giải:

a) Đặt AH = x (m) (x > 0)

⇒ BH = AB – AH = 762 – x (m)

Xét tam giác AHC vuông tại H, có:

tanA=CHAH

tan6°=CHx

⇔ CH = tan6°.x

Xét tam giác BHC vuông tại H, có:

⇔ tan B = CHBH

tan4°=CH762-x

⇔ CH = tan4°.(762 – x)

⇒ tan6°.x = tan4°.(762 – x)

⇔ (tan6° + tan4°).x ≈ 53,3

⇔ x ≈ 304,4

⇒ CH ≈ tan6°.304,4 ≈ 32

Vậy chiều cao của con dốc là 32 m.

b) Xét tam giác AHC vuông tại H, có:

sin A = CHAH

⇔ sin 6°=32AC

⇔ AC = 32sin6°306,1m=0,3061km

Xét tam giác BHC vuông tại H, có:

sin B = CHCB

sin4°=32AB

AB=32sin4°458.7m=0,4587km

Thời gian bạn AN đi từ nhà đến trường là: 0,30614+0,4587190,1(gi)=6phút

Vậy bạn An đến trường lúc: 6 giờ 6 phút.

Bài 20 trang 80 SBT Toán 10 Tập 1: Quan sát cây cầu văng minh họa ở Hình 25.

 Quan sát cây cầu văng minh họa ở Hình 25. Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H)(ảnh 1)

 Quan sát cây cầu văng minh họa ở Hình 25. Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H)(ảnh 2)

Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H) là 150 m, độ dài dây văng dài nhất nối từ đỉnh trụ xuống mặt cầu (vị trí B) là 300m, khoảng cách từ chân dây văng dài nhất tới chân trụ trên mặt cầu là 250 m (Hình 26). Tính độ dốc của cầu qua trụ nói trên (làm tròn kết quả đến hàng phần mười theo đơn vị độ).

Quảng cáo

Lời giải:

 Quan sát cây cầu văng minh họa ở Hình 25. Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H)(ảnh 3)

Xét tam giác ABC, có:

cosAHB^=AH2+BH2-AB22.AH.BH=1502+2502-30022.150.250=-115

AHB^93,8°

Ta lại có: AHB^+BHK^=180°

BHK^=180°-AHB^=180°-93,8°=86,2°

Xét tam giác BHK vuông tại K, có:

HBK^+BHK^=900 (hai góc phụ nhau)

HBK^=90°-BHK^

HBK^90°-86,2°=3,8° .

Vậy độ dốc của cầu qua trụ khoảng 3,8°.

Lời giải Sách bài tập Toán 10 Bài 2: Giải tam giác. Tính diện tích tam giác Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên