Giải SBT Toán 10 trang 82 Tập 2 Cánh diều
Với giải Sách bài tập Toán 10 trang 82 Tập 2 trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng SBT Toán 10 Cánh diều Tập 2 hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 82.
- Bài 38 trang 82 SBT Toán lớp 10 Tập 2
- Bài 39 trang 82 SBT Toán lớp 10 Tập 2
- Bài 40 trang 82 SBT Toán lớp 10 Tập 2
- Bài 41 trang 82 SBT Toán lớp 10 Tập 2
- Bài 42 trang 82 SBT Toán lớp 10 Tập 2
- Bài 43 trang 82 SBT Toán lớp 10 Tập 2
- Bài 44 trang 82 SBT Toán lớp 10 Tập 2
- Bài 45 trang 82 SBT Toán lớp 10 Tập 2
Giải SBT Toán 10 trang 82 Tập 2 Cánh diều
Bài 38 trang 82 SBT Toán 10 Tập 2: Cho : và :. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
A. 300;
B. 450;
C. 900;
D. 600.
Lời giải:
Ta thấy vectơ chỉ phương của ∆1 là: =(;-1)
Vectơ chỉ phương của ∆2 là: =(;1)
Ta có: cos(,) =
Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.
Do đó
Vậy chọn đáp án D.
Bài 39 trang 82 SBT Toán 10 Tập 2: Khoảng cách từ điểm M(5; - 2) đến đường thẳng ∆: - 3x + 2y + 6 = 0 là:
A. 13;
B. ;
C. ;
D. 2.
Lời giải:
Áp dụng công thức ta có:
d(M, ∆)= =
Vậy chọn đáp án B.
Bài 40 trang 82 SBT Toán 10 Tập 2: Xét vị trí tương đối của mỗi cặp đường thẳng sau:
a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0;
b) : và d4: x + 3y – 5 = 0;
c) : và : .
Lời giải:
a) Vectơ pháp tuyến của d1 là: =(2;-3)
Vectơ pháp tuyến của d2 là: =(2;1)
Ta có: suy ra hai vectơ và không cùng phương.
Do đó d1 và d2 cắt nhau.
b) Vectơ chỉ phương của d3 là: =(-3;1) nên vectơ pháp tuyến của d3 là: =(1;3).
Vectơ pháp tuyến của d4 là: =(1;3)
Ta có = nên và cùng phương hay d3 song song hoặc trùng d4.
Lấy điểm A(-1; 3) thuộc d3.
Thay tọa độ A(-1; 3) vào d4 ta có: - 1 + 3.3 – 5 = 3 = 0 (vô lí).
Suy ra A(-1; 3) không thuộc d4.
Vậy 2 đường thẳng trên song song.
c) Vectơ chỉ phương của d5 là =(-2;1)
Vectơ chỉ phương của d6 là =(2;-1)
Ta thấy nên 2 vectơ và cùng phương. Do đó hai đường thẳng d5 và d6 song song hoặc trùng nhau.
Lấy điểm M(2; -1) thuộc đường thẳng d5. Thay tọa độ điểm M vào phương trình tham số của d6 ta có:
t'=2
Suy ra M thuộc d6.
Vậy d5 trùng d6.
Bài 41 trang 82 SBT Toán 10 Tập 2: Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau:
a) ∆1: 3x + y – 5 = 0 và ∆2: x + 2y – 3 = 0;
b) ∆3: và ; ∆4:
c) : -x+3y+2=0 và ∆6: .
Lời giải:
a) Vectơ pháp tuyến của là =(3;1)
Vectơ pháp tuyến của là =(1;2)
Góc giữa 2 đường thẳng là:
cos(,)= |cos(.)|=
Suy ra (,)=.
b) Vectơ chỉ phương của là =(;3)
Vectơ chỉ phương của là =(-;-1)
Góc giữa 2 đường thẳng là:
cos(,)= |cos(.)|=
Suy ra (,)=.
c) Vectơ pháp tuyến của là =(-;3)
Vectơ chỉ phương của là =(3;-) nên vectơ pháp tuyến của là =(;3).
Góc giữa 2 đường thẳng là:
cos(;)= |cos(,)|
=
Suy ra (;)=.
Bài 42 trang 82 SBT Toán 10 Tập 2: Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau:
a) A(- 3; 1) và ∆1: 2x + y – 4 = 0;
b) B(1; - 3) và .
Lời giải:
a) Ta có: vectơ pháp tuyến của đường thẳng là =(2;1)
Suy ra d(A,)= .
b) có vectơ chỉ phương là =(3;-1) và đi qua điểm A(-3; 1).
Vectơ pháp tuyến của đường thẳng là: =(1;3).
Suy ra phương trình đường thẳng là: x + 3 + 3( y – 1) = 0 hay x + 3y = 0
d(B,)= .
Bài 43 trang 82 SBT Toán 10 Tập 2: Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0. Chứng minh rằng khoảng cách giữa hai đường thẳng ∆1 và ∆2 bằng .
Lời giải:
Gọi M(x0;y0) thuộc ∆1 nên ax0+by0+c=0.
Khoảng cách giữa ∆1 đến ∆2 bằng khoảng cách từ M đến ∆2 bằng
d(M;∆2)=.
Vậy bài toán được chứng minh.
Bài 44 trang 82 SBT Toán 10 Tập 2: Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x – 2y + 3 = 0. Với giá trị nào của tham số m thì:
a) ∆1 // ∆2;
b) ∆1 ⊥ ∆2.
Lời giải:
Vectơ pháp tuyến của ∆1 là: =(m;-2);
Vectơ pháp tuyến của ∆2 là: =(1;-2).
a) ∆1 // ∆2 khi cùng phương với
hay m=1.
Thay m = 1 vào lần lượt hai đường thẳng ∆1 ta được: x – 2y – 1 = 0.
Lấy M(– 1; 1) thuộc ∆2, thay x = – 1 và y = 1 vào ∆1, ta được: – 1 – 2.1 – 1 = 0 (vô lí). Do đó M không thuộc ∆1.
Vậy m = 1 thỏa mãn để ∆1 // ∆2.
b) ∆1 vuông góc ∆2 khi vuông góc với hay .=0
⇔ m.1 + (-2).(-2) = 0 m = - 4.
Vậy với m= – 4 thì ∆1 vuông góc ∆2.
Bài 45 trang 82 SBT Toán 10 Tập 2: Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B đồng thời cách đều A và C?
Lời giải:
cách đều A và C khi và chỉ khi ∆ đi qua trung điểm của AC hoặc ∆ song song với AC.
TH1: ∆ là đi qua trung điểm của AC
Gọi M là trung điểm của đoạn thẳng AB nên tọa độ điểm M là M(2; 3).
Vectơ chỉ phương của đường thẳng ∆ là: =(2;-1)
Suy ra vectơ pháp tuyến của đường thẳng ∆ là: =(1;2)
Do đó phương trình đường thẳng ∆ là: x – 2 + 2(y – 3) = 0 ⇔ x + 2y – 8 = 0
TH2: ∆ song song với AC.
Vectơ chỉ phương của đường thẳng ∆ là: =(8;2) nên vectơ pháp tuyến của đường thẳng ∆ là: =(1;-4)
Phương trình đường thẳng ∆ là: x – 4 – 4(y – 2) = 0 ⇔ x – 4y + 4 = 0.
Lời giải sách bài tập Toán lớp 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng Cánh diều hay khác:
Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều