Điền kí hiệu (⊂, ⊃, =) thích hợp vào chỗ chấm

Giải sách bài tập Toán 10 Bài 2: Tập hợp

Bài 4 trang 13 SBT Toán 10 Tập 1: Điền kí hiệu (⊂, ⊃, =) thích hợp vào chỗ chấm.

a) {x | x(x – 1)(x + 1) = 0} ... {x | |x| < 2, x ∈ ℤ};

b) {3; 6; 9} ... {x ∈ ℕ | x là ước của 18};

c) {x | x = 5k, k ∈ ℕ} ... { x ∈ ℕ | x là bội của 5};

d) {4k | k ∈ ℕ} ... {x | x = 2m, m ∈ ℕ}.

Quảng cáo

Lời giải:

a) Ta có: x(x – 1)(x + 1) = 0 ⇔ x = 0 hoặc x = 1 hoặc x = – 1.

Do đó, {x | x(x – 1)(x + 1) = 0} = {– 1; 0; 1}. (1)

Lại có: các số nguyên x, sao cho |x| < 2 thì |x| = 0, |x| = 1 hay x = 0, x = 1, x = – 1.

Do đó, {x | |x| < 2, x ∈ ℤ} = {– 1; 0; 1}. (2)

Từ (1) và (2) suy ra {x | x(x – 1)(x + 1) = 0} = {x | |x| < 2, x ∈ ℤ}.

b) Các số tự nhiên là ước của 18 là: 0; 2; 3; 6; 9; 18.

Do đó, {x ∈ ℕ | x là ước của 18} = {0; 2; 3; 6; 9; 18}.

Vậy {3; 6; 9} ⊂ {x ∈ ℕ | x là ước của 18}.

c) Ta có: x = 5k, k ∈ ℕ, do đó x là các số tự nhiên chia hết cho 5 hay x là bội của 5.

Do đó, {x | x = 5k, k ∈ ℕ} = { x ∈ ℕ | x là bội của 5}.

d) Tập hợp {4k | k ∈ ℕ} gồm các số tự nhiên chia hết cho 4, tập hợp {x | x = 2m, m ∈ ℕ} gồm các số tự nhiên chia hết cho 2. Một số tự nhiên chia hết cho 4 thì chia hết cho 2, nhưng một số tự nhiên chia hết cho 2 thì chưa chắc đã chia hết cho 4.

Do đó, {4k | k ∈ ℕ} ⊂ {x | x = 2m, m ∈ ℕ}.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Chân trời sáng tạo khác
Tài liệu giáo viên