Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + 4m^2 – m = 0
Sách bài tập Toán 10 Bài 17: Dấu của tam thức bậc hai
Bài 6.23 trang 18 Sách bài tập Toán lớp 10 Tập 2: Tìm các giá trị của tham số m để phương trình x2 – 2(m – 1)x + 4m2 – m = 0
a) có hai nghiệm phân biệt;
b) có hai nghiệm trái dấu.
Lời giải:
Xét x2 – 2(m – 1)x + 4m2 – m = 0 có:
a = 1 > 0
∆’ = [–(m – 1)]2 – 1.(4m2 – m) = m2 – 2m + 1 – 4m2 + m = –3m2 – m + 1 .
a)
Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt
⇔ ∆’ > 0
⇔ –3m2 – m + 1 > 0
Xét phương trình bậc hai –3m2 – m + 1 = 0 có a = –3 < 0 và ∆ma = (–1)2 – 4.(–3).1 = 13 > 0
Do đó, phương trình –3m2 – m + 1 = 0 có hai nghiệm phân biệt là:
Do đó, –3m2 – m + 1 > 0
Vậy khi thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt.
b) Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm trái dấu
⇔ ac < 0
⇔ 1.(4m2 – m ) < 0
⇔ 4m2 – m < 0
Xét phương trình bậc hai 4m2 – m = 0 có a = 4 > 0 và ∆mb = (–1)2 – 4.4.0 = 1 > 0
Do đó, phương trình bậc hai 4m2 – m = 0 có hai nghiệm phân biệt là:
Do đó, 4m2 – m < 0 ⇔
Vậy khi thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm trái dấu.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Săn SALE shopee tháng 6-6:
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn lớp 10 (hay nhất) - KNTT
- Giải Toán lớp 10 - KNTT
- Giải Tiếng Anh lớp 10 - KNTT
- Giải Vật lí lớp 10 - KNTT
- Giải Giáo dục Kinh tế và Pháp luật lớp 10 - KNTT
- Giải Sinh học lớp 10 - KNTT
- Giải Địa lí lớp 10 - KNTT
- Giải Lịch sử lớp 10 - KNTT
- Giải Công nghệ lớp 10 - KNTT
- Giải Hoạt động trải nghiệm lớp 10 - KNTT
- Giải Giáo dục quốc phòng lớp 10 - KNTT
- Giải Tin học lớp 10 - KNTT