Giải SBT Toán 10 trang 11 Tập 1 Kết nối tri thức
Với Giải SBT Toán 10 trang 11 Tập 1 trong Bài 2: Tập hợp và các phép toán trên tập hợp Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 11.
Giải SBT Toán 10 trang 11 Tập 1 Kết nối tri thức
Bài 1.9 trang 11 SBT Toán 10 Tập 1: Điền Đ vào ô trống nếu mệnh đề đúng, điền S vào ô trống nếu mệnh đề sai.
a) ∅⊂ ℕ
b) ℕ ⊂ ℚ
c) ∅ = {0}
d) {∅} ⊂ ℝ
Lời giải:
a) Tập rỗng là tập con của mọi tập hợp nên ∅⊂ ℕ
b) Các số tự nhiên có thể biểu diễn thành các số hữu tỉ với mẫu số bằng 1.
Do đó ℕ ⊂ ℚ
c) Tập rỗng là tập hợp không có phần tử, tập {0} có một phần tử là 0 nên ∅ = {0}
d) Không có tập hợp chỉ chứa tập rỗng do đó {∅} ⊂ ℝ
Bài 1.10 trang 11 SBT Toán 10 Tập 1: Cho hai tập hợp A, B được mô tả bởi biểu đồ Ven như sau:
a) Hãy chỉ ra các phần tử của tập hợp A, tập hợp B.
b) Tính n(A ∪ B).
c) Hãy chỉ ra các phần tử thuộc tập hợp A mà không thuộc tập hợp B.
d) Hãy chỉ ra các phần tử thuộc tập hợp B mà không thuộc tập hợp A.
Lời giải:
a) Ta có:
A = {1; 4; 5; 8}.
B = {2; 4; 7; 8; 9}.
b) Ta có A ∪ B = {1; 2; 4; 5; 7; 8; 9} nên n(A ∪ B) = 7.
c) Các phần tử thuộc tập hợp A mà không thuộc tập hợp B là: 1; 5.
Do đó A \ B = {1; 5}.
Các phần tử thuộc tập hợp B mà không thuộc tập hợp A là: 2; 7; 9.
Do đó B \ A = {2; 7; 9}.
Bài 1.11 trang 11 SBT Toán 10 Tập 1: Xác định các tập hợp sau bằng cách nêu tính chất đặc trưng cho phần tử của tập hợp.
A = {0; 4; 8; 12; 16}; B = {-3; 9; -27; 81}; C là đường thẳng trung trực của đoạn thẳng AB.
Lời giải:
Xét tập A = {0; 4; 8; 12; 16}
Ta thấy các phần tử của tập A là các số tự nhiên chia hết cho 4, nhỏ nhất là 0 và lớn nhất là 16.
Do đó A = {4x | x ℕ; x ≤ 4}.
Xét tập B = {-3; 9; -27; 81}
Ta thấy -3 = (-3)1; 9 = (-3)2; -27 = (-3)3; 81 = (-3)4.
Do đó các phần tử của tập B là các lũy thừa của -3 với số mũ tăng dần từ 1 đến 4.
Do đó B = {(-3)x | x ℕ; 1 ≤ x ≤ 4}.
Xét tập C là đường thẳng trung trực của đoạn thẳng AB.
Các điểm nằm trên đường trung trực của đoạn thẳng AB thì cách đều hai đầu mút A và B.
Do đó C = {P | PA = PB}.
Bài 1.12 trang 11 SBT Toán 10 Tập 1: Trong các tập hợp sau, tập nào là tập rỗng?
A = {x ℕ | x ≤ 0}; B = {x ℕ | 2x2 - 3x - 5 = 0}.
Lời giải:
Xét tập A = {x ℕ | x ≤ 0}
Ta thấy x Î ℕ mà x ≤ 0 nên x = 0.
Do đó tập A có một phần tử là 0 nên tập A không phải là tập rỗng.
Xét tập B = {x ℕ | 2x2 - 3x - 5 = 0}
Ta có 2x2 - 3x - 5 = 0
2x2 + 2x - 5x - 5 = 0
2x(x + 1) - 5(x + 1) = 0
(x + 1)(2x - 5) = 0
Ta thấy -1 là một số nguyên âm, là một số hữu tỉ, cả hai số này đều không phải số tự nhiên nên không có số tự nhiên x thỏa mãn 2x2 - 3x - 5 = 0.
Do đó tập B là tập rỗng.
Bài 1.13 trang 11 SBT Toán 10 Tập 1: Trong các mệnh đề sau, mệnh đề nào đúng? Mệnh đề nào sai? Giải thích kết luận đưa ra.
a) Tập rỗng là tập con của mọi tập hợp;
b) Nếu X = {a; b} thì a X;
c) Nếu X = {a; b} thì {a; b} X.
Lời giải:
a) Theo quy ước ta có tập rỗng là tập con của mọi tập hợp nên mệnh đề “Tập rỗng là tập con của mọi tập hợp” là mệnh đề đúng.
b) Nếu X = {a; b} thì phần tử a thuộc tập hợp X.
Do đó mệnh đề “Nếu X = {a; b} thì a X” là mệnh đề sai.
c) Một tập hợp là tập con của chính tập hợp đó.
Do đó mệnh đề “Nếu X = {a; b} thì {a; b} X” là mệnh đề đúng.
Bài 1.14 trang 11 SBT Toán 10 Tập 1: Xác định các tập hợp sau và biểu diễn chúng trên trục số.
a) (4; 7) ∩ (-1; 3);
b) (-2; 1] ∩ (-; 1);
c) (-2; 6) \ (3; 10);
d) (-3; 5] \ [2; 8).
Lời giải:
a) (4; 7) ∩ (-1; 3) = ∅.
Do đó ta không biểu diễn được tập hợp (4; 7) ∩ (-1; 3) trên trục số.
b) (-2; 1] ∩ (-; 1) = (-2; 1).
Ta có hình biểu diễn tập hợp (-2; 1) trên trục số như sau:
c) (-2; 6) \ (3; 10) = (-2; 3] ∪ (3; 6) \ (3; 10) = (-2; 3].
Ta có hình biểu diễn tập hợp (-2; 3] trên trục số như sau:
d) (-3; 5] \ [2; 8) = (-3; 2) ∪ [2; 5] \ [2; 8) = (-3; 2).
Ta có hình biểu diễn tập hợp (-3; 2) trên trục số như sau:
Bài 1.15 trang 11 SBT Toán 10 Tập 1: Trong một cuộc phỏng vấn 56 người về những việc họ thường làm vào ngày nghỉ cuối tuần, có 24 người thích tập thể thao, 15 người thích đi câu cá và 20 người không thích cả hai hoạt động trên.
a) Có bao nhiêu người thích chơi thể thao hoặc thích câu cá?
b) Có bao nhiêu người thích cả câu cá và chơi thể thao?
c) Có bao nhiêu người chỉ thích câu cá, không thích chơi thể thao?
Lời giải:
a) Trong số 56 người phỏng vấn, có 20 người không thích cả hai hoạt động nên số người hoặc thích chơi thể thao hoặc thích câu cá là:
56 – 20 = 36 (người)
Vậy có 36 người thích chơi thể thao hoặc thích câu cá.
b) Trong số 56 người phỏng vấn, có 24 người thích tập thể thao, 15 người thích đi câu cá nên số người thích cả câu cá và chơi thể thao là:
24 + 15 - 36 = 3 (người).
Vậy có 3 người thích cả câu cá và chơi thể thao.
c) Trong 15 người thích câu cá thì có 3 người thích thêm cả hoạt động thể thao nên số người chỉ thích câu cá, không thích chơi thể thao là:
15 - 3 = 12 (người).
Vậy có 12 người chỉ thích câu cá, không thích chơi thể thao.
Xem thêm lời giải Sách bài tập Toán 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT