Giải SBT Toán 10 trang 33 Tập 1 Kết nối tri thức

Với Giải SBT Toán 10 trang 33 Tập 1 trong Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 33.

Giải SBT Toán 10 trang 33 Tập 1 Kết nối tri thức

Bài 3.3 trang 33 sách bài tập Toán lớp 10 Tập 1: Cho góc α thỏa mãn 0° < α < 180°, tanα = 2. Tính giá trị của các biểu thức sau:

a) G = 2sin α + cos α;

b) H = 2sinα+cosαsinαcosα.

Quảng cáo

Lời giải:

Do 0° < α < 180° nên sinα > 0.

Mà tanα = sinαcosα = 2 > 0 nên sin α và cos α cùng dấu, do đó cosα > 0.

Do tanα = sinαcosα = 2 nên sinα = 2cosα

sin2α = 4cos2α

Ta có sin2α + cos2α = 1

4cos α + cos2α = 1

5cos2α = 1

cos2α = 15

Do cosα > 0 nên cosα = 15.

Do đó sinα = 25.

a) G = 2sinα + cosα

= 2 . 25 + 15

= 45+15

= 55= 5

Vậy G = 5.

b) H = 2sinα+cosαsinαcosα

= 2.25+152515= 45+1515

= 55.5 = 5

Vậy H = 5.

Bài 3.4 trang 33 sách bài tập Toán lớp 10 Tập 1: Cho góc α thỏa mãn 0° < α < 180°, tanα = 2. Tính giá trị của biểu thức

K = sin3α+sinα.cos2α+2sin2α.cosα4cos3αsinαcosα.

Quảng cáo


Lời giải:

Do 0° < α < 180° nên sinα > 0.

Mà tanα = sinαcosα = 2 > 0 nên sinα và cosα cùng dấu, do đó cosα > 0.

Chia cả tử và mẫu của K cho cos3α ta được:

K = sin3αcos3α+sinα.cos2αcos3α+2sin2α.cosαcos3α4cos3αcos3αsinαcos3αcosαcos3α

= tan3α+tanα+2tan2α4tanα.1cos2α1cos2α

= tan3α+tanα+2tan2α41cos2αtanα1

= tan3α+tanα+2tan2α4tan2α+1.tanα1

= tan3α+tanα+2tan2α4tan3α+tanαtan2α1

= 23+2+222423+2221

= 22+2+4422+221

= 32323 = 32321

= 221 = 22+1212+1

= 22+121=2+2

Vậy K = 2 + 2.

Bài 3.5 trang 33 sách bài tập Toán lớp 10 Tập 1: Chứng minh rằng:

a) sin4α + cos4α = 1 - 2sin2α . cos2α;

b) sin6α + cos6α = 1 - 3sin2α . cos2α;

c*) sin4α+6cos2α+3+cos4α+4sin2α=4.

Quảng cáo

Lời giải:

a) Ta có (sin2α + cos2α)2 = sin4α + 2sin2α . cos2α + cos4α

12 = sin4α + cos4α + 2sin2α . cos2α

sin4α + cos4α = 1 - 2sin2α . cos2α

Vậy sin4α + cos4α = 1 - 2sin2α . cos2α.

b) Ta có (sin2α + cos2α)3 = sin6α + cos6α + 3sin2α . cos2α(sin2α + cos2α)

13 = sin6α + cos6α + 3sin2α . cos2α . 1

sin6α + cos6α = 1 - 3sin2α . cos2α

Vậy sin6α + cos6α = 1 - 3sin2α . cos2α.

c) Xét sin4α + 6cos2α + 3

= sin4α + 6(1 - sin2α) + 3

= sin4α - 6sin2α + 9

= (sin2α - 3)2

sin4α+6cos2α+3=sin2α32

= |sin2α – 3| = 3 - sin2α

(do 0 ≤ sin2α < 1 nên sin2α – 3 < 0).

Xét cos4α + 4sin2α

= cos4α + 4(1 - cos2α)

= cos4α - 4 cos2α + 4

= (cos2α - 2)2

cos4α+4sin2α=cos2α22

= |cos2α – 2| = 2 - cos2α

(do 0 ≤ cos2α < 1 nên cos2α – 2 < 0).

sin4α+6cos2α+3+cos4α+4sin2α

= 3 - sin2 α + 2 - cos2 α

= 5 - (sin2 α + cos2 α)

= 5 - 1

= 4.

Vậy sin4α+6cos2α+3+cos4α+4sin2α=4.

Bài 3.6 trang 33 sách bài tập Toán lớp 10 Tập 1: Góc nghiêng của Mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tia nắng lúc giữa trưa với mặt đất. Trong thực tế, để đo trực tiếp góc này, vào giữa trưa (khoảng 12 giờ), em có thể dựng một thước thẳng vuông góc với mặt đất, đo độ dài của bóng thước trên mặt đất. Khi đó, tang của góc nghiêng Mặt Trời tại vị trí đặt thước bằng tỉ số giữa độ dài của thước và độ dài của bóng thước. Góc nghiêng của Mặt Trời phụ thuộc vào vĩ độ của vị trí đo và phụ thuộc vào thời gian đo trong năm (ngày thứ mấy trong năm). Tại vị trí có vĩ độ ϕ và ngày thứ N trong năm, góc nghiêng của Mặt Trời α còn được tính theo công thức sau:

Góc nghiêng của Mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tia nắng

trong đó m = 0 nếu 1 ≤ N ≤ 172, m = 1 nếu 173 ≤ N ≤ 355, m = 2 nếu 356 ≤ N ≤ 365.

a) Hãy áp dụng công thức trên để tính góc nghiêng của Mặt Trời vào ngày 10/10 trong năm không nhuận (năm mà tháng 2 có 28 ngày) tại vị trí có vĩ độ ϕ = 20°.

b) Hãy xác định vĩ độ tại nơi em sinh sống và tính góc nghiêng của Mặt Trời tại đó theo hai cách đã được đề cập trong bài toán (đo trực tiếp và tính theo công thức) và so sánh hai kết quả thu được.

Quảng cáo

Lời giải:

Tháng 10 và tháng 12 có 31 ngày; tháng 11 có 30 ngày.

Nên từ 10/10 đến hết tháng 10 còn 21 ngày.

Do đó ngày 10/10 trong năm không nhuận là ngày thứ: 365 - 21 - 30 - 31 = 283 trong năm đó.

Vì 173 ≤ N = 283 ≤ 355 nên m = 1.

Góc nghiêng của Mặt Trời vào ngày 10/10 tại vị trí có vĩ độ ϕ = 20° là:

Góc nghiêng của Mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tia nắng

Vậy góc nghiêng của Mặt Trời vào ngày 10/10 tại vị trí có vĩ độ ϕ = 20° khoảng 62,35°.

b) Học sinh tự thực hiện việc đo và tính theo công thức để so sánh.

Lưu ý tại vị trí có vĩ độ f và ngày thứ N trong năm, góc nghiêng của Mặt Trời α còn được tính theo công thức sau:

Góc nghiêng của Mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tia nắng

trong đó m = 0 nếu 1 ≤ N ≤ 172, m = 1 nếu 173 ≤ N ≤ 355, m = 2 nếu 356 ≤ N ≤ 365.

Lời giải Sách bài tập Toán lớp 10 Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ Kết nối tri thức hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên