Giải SBT Toán 10 trang 38 Tập 2 Kết nối tri thức
Với Giải SBT Toán 10 trang 38 Tập 2 trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 38.
Giải SBT Toán 10 trang 38 Tập 2 Kết nối tri thức
Bài 7.11 trang 38 Sách bài tập Toán lớp 10 Tập 2: Tính góc giữa các cặp đường thẳng sau:
a) d: y – 1 = 0 và k: x – y + 4 = 0;
b) và b: 3x + y + 1 = 0;
c)
Hướng dẫn giải:
a)
Gọi φ là góc giữa hai đường thẳng d và k. Từ giả thiết ta có . Do đó, theo công thức tính góc của hai đường thẳng thì
.
Vậy góc giữa hai đường thẳng là φ = 45°.
b)
Gọi φ là góc giữa hai đường thẳng a và b. Từ giả thiết ta có nên . Do đó, theo công thức tính góc của hai đường thẳng thì
Vậy góc giữa hai đường thẳng a và b là φ = 45°.
c)
Gọi φ là góc giữa hai đường thẳng m và n. Từ giả thiết ta có . Do đó theo công thức tính góc giữa hai đường thẳng thì
Vậy góc giữa hai đường thẳng m và n là φ = 60°.
Bài 7.12 trang 38 Sách bài tập Toán lớp 10 Tập 2: Cho hai đường thẳng d: 2x + y + 1 = 0 và k: 2x + 5y – 3 = 0.
a) Chứng minh rằng hai đường thẳng cắt nhau. Tìm giao điểm của hai đường thẳng đó.
b) Tính tang của góc giữa hai đường thẳng.
Hướng dẫn giải:
a)
Xét d: 2x + y + 1 = 0 và k: 2x + 5y – 3 = 0 ta có:
a1 = 2, b1 = 1, c1 = 1
a2 = 2, b2 = 5, c2 = –3
Xét tỉ số:
Do đó, d và k cắt nhau (điều cần phải chứng minh).
Giao điểm của hai đường thẳng có tọa độ là nghiệm của hệ phương trình:
Vậy tọa độ giao điểm của hai đường thẳng là (–1; 1).
b)
Gọi φ là góc giữa hai đường thẳng d và k.
Từ giả thiết ta có
Do đó, theo công thức tính góc của hai đường thẳng thì:
Vì φ là góc giữa hai đường thẳng nên 0° ≤ φ ≤ 90°, hơn nữa cosφ ≠ 0 và cosφ ≠ 1 nên ta có: 0° < φ < 90°, suy ra tanφ > 0.
Lại có: 1 + tan2φ = .
Do đó,
Bài 7.13 trang 38 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, tìm điểm M thuộc trục Ox sao cho khoảng cách từ M đến đường thẳng ∆: 3x + y – 3= 0 bằng .
Hướng dẫn giải:
Do M thuộc Ox nên toạ độ của M có dạng M(m; 0).
Từ giả thiết ta có:
⇔ |3m – 3| = 10 (*)
TH1: 3m – 3 ≥ 0 hay m ≥ 1
Khi đó, ta có:
(*) ⇔ 3m – 3 = 10 ⇔ m = (thỏa mãn)
TH2: 3m – 3 < 0 hay m < 1
Khi đó, ta có:
(*) ⇔ –3m + 3 = 10 ⇔ m = (thỏa mãn)
Vậy có hai điểm thoả mãn là .
Bài 7.14 trang 38 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x + y – 5 = 0.
a) Viết phương trình đường thẳng d qua điểm A(3; 1) và song song với đường thẳng ∆.
b) Viết phương trình đường thẳng k đi qua điểm B(–1; 0) và vuông góc với đường thẳng ∆.
c) Lập phương trình đường thẳng a song song với đường thẳng ∆ và cách điểm O một khoảng bằng .
Hướng dẫn giải:
a)
Đường thẳng d qua điểm A(3; 1) và song song với đường thẳng ∆ nên nhận vectơ pháp tuyến bằng vectơ pháp tuyến của ∆ là: = (2; 1)
Phương trình đường thẳng d là:
2(x – 3) + 1(y – 1) = 0
⇔ 2x + y – 6 – 1 = 0
⇔ 2x + y – 7 = 0.
b)
Đường thẳng k đi qua điểm B(–1; 0) và vuông góc với đường thẳng ∆ nên vectơ pháp tuyến của k vuông góc với vectơ pháp tuyến của ∆. Do = (2; 1) là một vectơ pháp tuyến của ∆ nên = (1; –2) là một vectơ pháp tuyến của d.
Phương trình đường thẳng k là:
1.[x – (–1)] – 2.(y – 0) = 0
⇔ x – 2y + 1 = 0.
c)
Đường thẳng a song song với đường thẳng ∆ nên nhận vectơ pháp tuyến bằng vectơ pháp tuyến của ∆ là: = (2; 1)
Do đó, phương trình đường thẳng a có dạng: 2x + y + c = 0 với c ≠ –5.
Theo công thức tính khoảng cách ta có
⇔ |c| = 5
⇔ c = ±5
Mà c ≠ –5 nên c = 5
Vậy phương trình đường thẳng a là: 2x + y + 5 = 0.
Bài 7.15 trang 38 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho tam giác ABC có A(2; –1), B(2; –2) và C(0; –1).
a) Tính độ dài đường cao của tam giác ABC kẻ từ A.
b) Tính diện tích tam giác ABC.
c) Tính bán kính đường tròn nội tiếp tam giác ABC.
Hướng dẫn giải:
a)
Độ dài đường cao của tam giác ABC kẻ từ A chính là khoảng cách từ điểm A đến cạnh BC.
Đường thẳng BC nhận là một vectơ chỉ phương. Do đó là một vectơ pháp tuyến của BC.
Đường thẳng BC đi qua đểm B(2; –2) và có một vectơ pháp tuyến là nên có phương trình tổng quát là:
1(x – 2) + 2.[y – (–2)] = 0
⇔ x + 2y – 2 + 4 = 0
⇔ x + 2y + 2 = 0
Theo công thức tính khoảng cách, ta có
Vậy độ dài đường cao của tam giác ABC kẻ từ A là: (đvđd).
b)
Ta có (đvđd)
(đvdt).
c)
(đvđd)
(đvđd)
.
Vậy bán kính đường tròn nội tiếp tam giác ABC là
(đvđd).
Bài 7.16 trang 38 Sách bài tập Toán lớp 10 Tập 2: Cho đường thẳng d: x – 2y + 1 = 0 và điểm A(–2; 2).
a) Chứng minh A không thuộc đường thẳng d.
b) Tìm toạ độ hình chiếu vuông góc của A trên đường thẳng d.
c) Xác định điểm đối xứng của A qua đường thẳng d.
Hướng dẫn giải:
a)
Thay toạ độ điểm A vào phương trình đường thẳng d ta có:
–2 – 2.2 + 1 = –5 ≠ 0
Vậy điểm A không thuộc đường thẳng d (điều cần phải chứng minh).
b)
Gọi ∆ là đường thẳng đi qua A và vuông góc với đường thẳng d. Khi đó ∆ nhận vectơ chỉ phương của đường thẳng d là một vectơ pháp tuyến nên phương trình ∆ là:
2(x + 2) + 1(y – 2) = 0
⇔ 2x + y + 4 – 2 = 0
⇔ 2x + y + 2 = 0
Hình chiếu vuông góc H của điểm A trên đường thẳng d là giao điểm của đường thẳng d và ∆. Do đó, toạ độ của điểm H là nghiệm của hệ phương trình:
Vậy H(–1; 0).
c)
Gọi A'(xA’; yA’) là điểm đối xứng với A qua d. Khi đó H là trung điểm của AA’.
Ta có:
xH = (xA + xA’) : 2 ⇔ xA’ = 2xH – xA = 2.(–1) – (–2) = 0
yH = (yA + yA’) : 2 ⇔ yA’ = 2yH – yA = 2.0 – 2 = –2
Vậy A’(0; –2).
Bài 7.17 trang 38 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho hai điểm A(–3; 0), B(1; –2) và đường thẳng d: x + y – 1 = 0.
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d.
b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM.
Hướng dẫn giải:
a)
Ta có (–3 + 0 – 1).(1 – 2 – 1) = 8 > 0 nên theo tập nghiệm của bất phương trình bậc nhất hai ẩn ta có A, B nằm cùng phía so với đường thẳng d.
b)
Dựa vào phương trình đường thẳng d ta có:
x + y – 1 = 0
⇔ y = 1 – x
Do M thuộc đường thẳng d nên toạ độ của điểm M có dạng M(t; 1– t).
Chu vi tam giác ABM là: AB + MA + MB
Mà AB luôn không đổi nên chu vi tam giác ABM nhỏ nhất khi và chỉ khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có:
MA + MB = MA’ + MB ≥ A’B
Dấu bằng xảy ra khi M = A’B ∩ d
Gọi H là hình chiếu vuông góc của A lên d. Khi đó AH đi qua điểm A(–3;0) và nhận vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến nên phương trình của AH là:
1(x + 3) – 1(y – 0) = 0
⇔ x – y + 3 = 0
Vậy toạ độ điểm H là nghiệm của hệ phương trình
Suy ra H(–1; 2). Mặt khác, H là trung điểm của AA’ nên ta có:
xH = (xA + xA’) : 2 ⇔ xA’ = 2xH – xA = 2.(–1) – (–3) = 1
yH = (yA + yA’) : 2 ⇔ yA’ = 2yH – yA = 2.2 – 0 = 4
Do đó, ta có A’(1; 4)
Ta có là một vectơ chỉ phương của đường thẳng A’B. Do đó A’B là đường thẳng đi qua đểm A’(1; 4) và nhận là một vectơ pháp tuyến. Phương trình của đường thẳng A’B là:
1(x – 1) + 0(y – 4) = 0
⇔ x – 1 = 0
Vậy toạ độ điểm M là nghiệm của hệ phương trình
Do đó ta có M(1; 0).
Lời giải sách bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách Kết nối tri thức hay khác:
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải SBT Toán 10 Kết nối tri thức
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT