Giải SBT Toán 10 trang 41 Tập 2 Kết nối tri thức

Với Giải SBT Toán 10 trang 41 Tập 2 trong Bài 21: Đường tròn trong mặt phẳng tọa độ Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 41.

Giải SBT Toán 10 trang 41 Tập 2 Kết nối tri thức

Bài 7.19 trang 41 Sách bài tập Toán lớp 10 Tập 2: Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:

a) (x – 2)2 + (y – 8)2 = 49;

b) (x + 3)2 + (y – 4)2 = 23.

Quảng cáo

Hướng dẫn giải:

Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2

Với (a; b) là tọa độ tâm I và R > 0 là bán kính của đường tròn

a)

Xét (x – 2)2 + (y – 8)2 = 49 có:

a = 2, b = 8, R2 = 49 ⇒ R = 7

Vậy đường tròn (C) có tâm I(2; 8) và bán kính R = 7.

b)

Xét(x + 3)2 + (y – 4)2 = 23 có:

a = –3, b = 4, R2 = 23 ⇒ R = 23

Vậy đường tròn (C) có tâm I(–3; 4) và bán kính R = 23 .

Bài 7.20 trang 41 Sách bài tập Toán lớp 10 Tập 2: Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.

a) x2 + 2y2 – 4x – 2y + 1 = 0.

b) x2 + y2 – 4x + 3y + 2xy = 0.

c) x2 + y2 – 8x – 6y + 26 = 0.

d) x2 + y2 + 6x – 4y + 13 = 0

e) x2 + y2 – 4x + 2y + 1 = 0.

Quảng cáo


Hướng dẫn giải:

a)

Phương trình đã cho không là phương trình của đường tròn do hệ số của x2 và y2 không bằng nhau

b)

Phương trình đã cho không là phương trình của đường tròn do trong phương trình của đường tròn không có thành phần tích xy.

c)

Phương trình đã cho có các hệ số a = 4, b = 3, c = 26, ta có:

a2 + b2 – c = 42 + 32 – 26 = –1 < 0

do đó nó không là phương trình của đường tròn.

d)

Phương trình đã cho có các hệ số a = –3, b = 2, c = 13, ta có:

a2 + b2 – c = (–3)2 + 22 – 13 = 0

do đó nó không là phương trình của đường tròn.

e)

Phương trình đã cho có các hệ số a = 2, b = –1, c = 1, ta có:

a2 + b2 – c = 22 + (–1)2 – 1 = 4 > 0

nên đây là phương trình của đường tròn có tâm I(2; –1) và có bán kính R=4=2.

Bài 7.21 trang 41 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình của đường tròn (C) trong các trường hợp sau.

a) Có tâm I(3; 1) và có bán kính R = 2.

b) Có tâm I(3; 1) và đi qua điểm M(–1; 7).

c) Có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0.

d) Có đường kính AB với A(4; 1), B(–2; –5).

Quảng cáo

Hướng dẫn giải:

a)

Phương trình đường tròn có tâm I(3; 1) và có bán kính R = 2 là:

(x – 3)2 + (y – 1)2 = 22

⇔ (x – 3)2 + (y – 1)2 = 4.

b)

Đường tròn có tâm I(3; 1) và đi qua điểm M(–1; 7) có bán kính

R = IM = (-1-3)2+(7-1)2=213

Phương trình đường tròn có tâm I(3; 1) và đi qua điểm M(–1; 7) là:

(x – 3)2 + (y – 1)2 = (213)2

⇔ (x – 3)2 + (y – 1)2 = 52.

c)

Đường tròn có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0 có bán kính R = Viết phương trình của đường tròn (C) trong các trường hợp sau

Phương trình đường tròn có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0 là:

(x – 2)2 + (y + 4)2 = (13)2

⇔ (x – 2)2 + (y + 4)2 = 13.

d)

Đường tròn có đường kính AB với A(4; 1), B(–2; –5) có:

Tâm I là trung điểm AB nên:

xI = (xA + xB) : 2 = (4 + (– 2)) : 2 = 1

yI = (yA + yB) : 2 = (1 + (– 5)) : 2 = –2

Do đó, I(1; –2).

Bán kính R = AB2=(-2-4)2+(-5-1)22=32

Phương trình đường tròn có đường kính AB với A(4; 1), B(–2; –5) là:

(x – 1)2 + (y + 2)2 = (32)2

⇔ (x – 1)2 + (y + 2)2 = 18.

Bài 7.22 trang 41 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình đường tròn (C) có tâm thuộc đường thẳng Δ: x + y – 1 = 0 và đi qua hai điểm A(6; 2), B(–1; 3).

Quảng cáo

Hướng dẫn giải:

Dựa vào Δ: x + y – 1 = 0 ta có: y = 1 – x

Gọi I là tâm của đường tròn (C). Ta có I ∈ Δ ⇔ I(t; 1 – t)

Vì A, B thuộc (C) nên ta có

AI2 = BI2

⇔ (t – 6)2 + (1 – t – 2)2 = (t + 1)2 + (1 – t – 3)2

⇔ (t – 6)2 + (–1 – t )2 = (t + 1)2 + (–2 – t )2

⇔ (t – 6)2 + (t + 1)2 = (t + 1)2 + (t + 2)2

⇔ (t – 6)2 = (t + 2)2

⇔ t2 – 12t + 36 = t2 + 4t + 4

⇔ 16t = 32

⇔ t = 2

Do đó, I(2; –1)

Bán kính của (C) là:

R=IA=(6-2)2+(2-(-1))2=5

Phương trình của đường tròn (C) là:

(x – 2)2 + (y + 1)2 = 52

⇔ (x – 2)2 + (y + 1)2 = 25.

Lời giải sách bài tập Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên