Giải SBT Toán 10 trang 66 Tập 2 Kết nối tri thức

Với Giải SBT Toán 10 trang 66 Tập 2 trong Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 66.

Giải SBT Toán 10 trang 66 Tập 2 Kết nối tri thức

Bài 9.7 trang 66 Sách bài tập Toán lớp 10 Tập 2: Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ. Chọn ngẫu nhiên một khách. Biết rằng xác suất để chọn được một khách nữ là 913. Tìm x và y.

Quảng cáo

Hướng dẫn giải:

Theo đề bài ta có:

2x + y = 50 ⇔ y = 50 – 2x.

Sau một tiếng, trong quán có:

50 – (y – 6) + 2x – 5

= 50 – y + 6 + 2x – 5

= 51 + 2x – y (người)

Trong đó, có (2x – 5 + y) người là nữ. Vậy ta có xác suất để chọn được một khách nữ là:

2x-5+y51+2x-y=913

⇔ 459 + 18x – 9y = 26x – 65 + 13y

⇔ 4x + 11y = 262

Mà y = 50 – 2x nên ta có:

4x + 11 . (50 – 2x) = 262

⇔ 18x = 288

⇔ x = 16

Do đó, y = 50 – 2 . 16 = 18.

Vậy x = 16, y = 18.

Bài 9.8 trang 66 Sách bài tập Toán lớp 10 Tập 2: Một lớp có 40 học sinh trong đó có 16 nam. Trong các em nam có 3 em thuận tay trái. Trong các em nữ có 2 em thuận tay trái. Chọn ngẫu nhiên hai em. Tính xác suất để hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái.

Quảng cáo


Hướng dẫn giải:

Số cách để chọn ngẫu nhiên hai em trong 40 em học sinh là: C402 = 780 (cách).

Do đó, ta có n(Ω) = 780.

Gọi A là biến cố: “Hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái”

Lớp có 40 – 16 = 24 em nữ, trong đó, 24 – 2 = 22 em không thuận tay trái. Do đó, số cách chọn 1 em nữ không thuận tay trái là 22 cách.

Trong lớp có 3 em nam thuận tay trái, do đó, số cách chọn 1 em nam thuận tay trái là 3 cách.

Theo quy tắc nhân ta có: n(A) = 22 . 3 = 66.

Vậy xác suất của biến cố A là: P(A) = nAnΩ=66780=11130.

Bài 9.9 trang 66 Sách bài tập Toán lớp 10 Tập 2: Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh, một viên bi vàng; hộp II có một viên bi xanh, một viên bi vàng, hộp III có một viên bi đỏ và một viên bi xanh. Tất cả các viên bi đều có cùng kích thước. Từ mỗi hộp rút ngẫu nhiên một viên bi.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất để trong ba viên bi rút ra có ít nhất một viên bi đỏ bằng cách tính gián tiếp thông qua tính xác suất của biến cố đối.

Quảng cáo

Hướng dẫn giải:

a)

Kí hiệu Đ, X, V tương ứng là viên bi màu đỏ, xanh, vàng.

Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu:

Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh

Do đó, ta có:

Ω = {(ĐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.

Vậy n(Ω) = 12.

b)

Gọi biến cố A: “Trong ba viên bi rút ra có ít nhất một viên bi đỏ”

Biến cố đối của A là Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh: “Trong ba viên bi rút ra không có viên bi màu đỏ”.

Ta có: Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh = {XXX; XVX; VXX; VVX}; n(Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh) = 4.

Do đó, ta có: Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh

Vậy Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh

Bài 9.10 trang 66 Sách bài tập Toán lớp 10 Tập 2: Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.

Quảng cáo

Hướng dẫn giải:

Gọi a là số trên thẻ rút được từ hộp I, a ∈{1; 2; 3}.

Gọi b là số trên thẻ rút được từ hộp II, b ∈{2; 4; 6; 8}.

Gọi c là số trên thẻ rút được từ hộp III, c ∈{1; 3; 5; 7; 9; 11}.

Ta có không gian mẫu: Ω = {(a, b, c) | a ∈{1; 2; 3}, b ∈{2; 4; 6; 8}, c ∈{1; 3; 5; 7; 9; 11}}.

Theo quy tắc nhân, ta có: n(Ω) = 3 . 4 . 6 = 72.

Xét biến cố A: “Tổng ba số trên ba tấm thẻ là số lẻ”.

Do b luôn là một số chẵn và c luôn là một số lẻ nên tổng b + c luôn là một số lẻ, do đó để (a + b + c) là một số lẻ thì a phải là số chẵn. Do đó, a = 2.

Khi đó, A = {(2, b, c) | b ∈{2; 4; 6; 8}, c ∈{1; 3; 5; 7; 9; 11}}.

Do đó, n(A) = 1 . 4 . 6 = 24.

Vậy P(A) = nAnΩ=2472=13.

Bài 9.11 trang 66 Sách bài tập Toán lớp 10 Tập 2: Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán để ăn trưa.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của các biến cố sau:

E: “Hai người cùng vào một quán”.

F: “Cả hai không chọn quán C”.

Hướng dẫn giải:

a) Sơ đồ hình cây mô tả các phần tử của không gian mẫu là:

Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người

b)

Ta có không gian mẫu là:

Ω = {AA; AB; AC; BA; BB; BC; CA; CB; CC}.

Suy ra, n(Ω) = 9.

Ta có biến cố E: “Hai người cùng vào một quán”.

Do đó, E = {AA; BB; CC}; n(E) = 3.

Vậy P(E) = nEnΩ=39=13.

Ta có biến cố F: “Cả hai không chọn quán C”.

Do đó, F = {AA; AB; BA; BB}; n(F) = 4.

Vậy P(F) = nFnΩ=49.

Bài 9.12 trang 66 Sách bài tập Toán lớp 10 Tập 2: Trên một phố có hai quán ăn A, B. Bốn bạn Sơn, Hải, Văn, Đạo mỗi người chọn ngẫu nhiên một quán ăn.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất để:

• Tất cả đều vào một quán;

• Mỗi quán có đúng 2 bạn vào;

• Quán A có 3 bạn vào, quán B có 1 bạn vào;

• Một quán có 3 bạn vào, quán kia có 1 bạn vào.

Hướng dẫn giải:

a) Sơ đồ hình cây mô tả các phần tử của không gian mẫu là:

Trên một phố có hai quán ăn A, B. Bốn bạn Sơn, Hải, Văn, Đạo mỗi người chọn

b)

Ta có không gian mẫu:

Ω = {AAAA; AAAB; AABA; AABB; ABAA; ABAB; ABBA; ABBB; BAAA; BAAB; BABA; BABB; BBAA; BBAB; BBBA; BBBB}.

Do đó, n(Ω) = 16.

Gọi biến cố E: “Tất cả đều vào một quán”. Ta có:

E = {AAAA; BBBB}, n(E) = 2, suy ra P(E) = nEnΩ=216=18.

Gọi biến cố F: “Mỗi quán có đúng hai bạn vào”. Ta có:

F = {AABB; ABAB; ABBA; BAAB; BABA; BBAA}, n(F) = 6,

suy ra P(F) = nFnΩ=616=38.

Gọi biến cố G: “Quán A có 3 bạn vào, quán B có 1 bạn vào”. Ta có:

G = {AAAB; AABA; ABAA; BAAA}, n(G) = 4, suy ra P(G) = nGnΩ=416=14

Gọi biến cố K: “Một quán có 3 bạn vào, quán kia có 1 bạn vào.”. Ta có:

K1: “Quán A có 3 bạn vào, quán B có 1 bạn vào” nên K1 = G, n(K1) = 4.

K2: “Quán B có 3 bạn vào, quán A có 1 bạn vào”. Ta có:

K2 = {BBBA; BBAB; BABB; ABBB}, n(K2) = 4

n(K) = n(K1) + n(K2) = 4 + 4 = 8.

Vậy P(K) = nKnΩ=816=12.

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên