Tìm điểm cực trị của mỗi hàm số sau y = x.e^x

Giải SBT Toán 12 Cánh diều Bài 1: Tính đơn điệu của hàm số

Bài 23 trang 14 SBT Toán 12 Tập 1: Tìm điểm cực trị của mỗi hàm số sau:

a) y = x.ex;

b) y = (x + 1)2.e-x;

c) y = x2.ln x;

d) y=xlnx .

Quảng cáo

Lời giải:

a) Tập xác định: D = ℝ.

Ta có: y = x.ex ⇒ y' = (1 + x).ex.

   y' = 0 khi x = −1.

Ta có bảng biến thiên:

Tìm điểm cực trị của mỗi hàm số sau y = x.e^x

Vậy hàm số đạt cực tiểu tại x = −1, hàm số không có cực đại.

b) Tập xác định: D = ℝ.

Ta có: y = (x + 1)2.e-x ⇒y' = 2(x + 1)e-x – (x + 1)2e-x = (1 – x)(x + 1)e-x.

   y' = 0 khi x = ±1.

Ta có bảng biến thiên:

Tìm điểm cực trị của mỗi hàm số sau y = x.e^x

Vậy hàm số đạt cực đại tại x = 1 và đạt cực tiểu tại x = −1.

c) Tập xác định: D = (0; +∞).

Ta có: y = x2.ln x ⇒y' = 2x.lnx + x = x(2lnx + 1).

   y' = 0 khi x = 1e.

Ta có bảng biến thiên như sau:

Tìm điểm cực trị của mỗi hàm số sau y = x.e^x

Vậy hàm số đạt cực tiểu tại x = 1e, hàm số không có cực đại.

d) Tập xác định: D = (0; +∞).

Ta có: y=xlnxy'=lnx1ln2x.

   y' = 0 khi x = e.

Ta có bảng biến thiên:

Tìm điểm cực trị của mỗi hàm số sau y = x.e^x

Vậy hàm đạt cực tiểu tại x = e, hàm số không có cực đại.

Quảng cáo

Lời giải SBT Toán 12 Bài 1: Tính đơn điệu của hàm số hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên