Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn vectơ AB = (1; 2; 3)

Giải SBT Toán 12 Chân trời sáng tạo Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bài 3 trang 76 SBT Toán 12 Tập 1: Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn AB = (1; 2; 3) và AC = (−1; 4; −2).

Quảng cáo

Lời giải:

Gọi A(a; b; c).

Có G là trọng tâm nên GA+GB+GC+GO=0

GA+GA+AB+GA+AC+GA+AO=0

⇔ AB+AC+AO=4AG

Ta có: AB = (1; 2; 3), AC = (−1; 4; −2), AO = (−a; −b; −c),

AB+AC+AO = (−a; 6 – b; 1 – c).

          AG = (3 – a; −3 – b; 6 – c) ⇒ 4AG = (12 – 4a; −12 – 4b; 24 – 4c).

Do đó, a=124a6b=124a1c=244ca=4b=6c=233⇒ A4;6;233

Quảng cáo

Lời giải SBT Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên