Giải SBT Toán 7 trang 78 Tập 2 Cánh diều

Với Giải sách bài tập Toán 7 trang 78 Tập 2 trong Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh SBT Toán 7 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 78.

Giải SBT Toán 7 trang 78 Tập 2 Cánh diều

Bài 32 trang 78 sách bài tập Toán lớp 7 Tập 2: Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh.

a) ∆MAB = ∆MEC (Hình 22a).

b) ∆BAC = ∆DAC (Hình 22b).

c) ∆CAB = ∆DBA (Hình 22c).

d) ∆KDE = ∆NMP (Hình 22d).

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác

Quảng cáo

Lời giải:

a)

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác

Để ΔMAB = ΔMEC theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen giữa hai cạnh.

Mà tam giác này có AMB^=CME^ (hai góc đối đỉnh) và MB = MC.

Mặt khác AMB^ là góc xen giữa hai cạnh MA và MB, CME^ là góc xen giữa hai cạnh MC và ME.

Do đó điều kiện còn lại là điều kiện về cạnh, đó là MA = ME.

Vậy Hình 22a cần thêm điều kiện MA = ME.

b)

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác

ĐểΔBAC = ΔDAC theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen giữa hai cạnh.

Mà hai tam giác này có cạnh AC là cạnh chung, AB = AD.

Mặt khác BAC^ là góc xen giữa hai cạnh AB và AC, DAC^ là góc xen giữa hai cạnh AD và AC.

Do đó điều kiện còn lại là điều kiện về góc, đó là BAC^=DAC^ .

Vậy Hình 22b cần thêm điều kiện BAC^=DAC^ .

c)

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác

Để∆CAB = ∆DBA theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen giữa hai cạnh.

Mà hai tam giác này có AB là cạnh chung, BAC^=ABD^=90° .

Mặt khác BAC^ là góc xen giữa hai cạnh AB và AC, ABD^ là góc xen giữa hai cạnh BD và BA.

Do đó điều kiện còn lại là điều kiện về cạnh, đó là AC = BD.

Vậy Hình 22c cần thêm điều kiện AC = BD.

d)

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 22a, 22b, 22c, 22d là hai tam giác

Xét ∆KDE có: K^+D^+E^=180° (tổng ba góc trong một tam giác).

Suy ra D^=180°K^E^=180°80°40°=60° .

Để∆KDE = ∆NMP theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen giữa hai cạnh.

Mà DK = NM, D^=M^ (cùng bằng 60°).

Mặt khác D^ là góc xen giữa hai cạnh DK và DE, M^ là góc xen kẽ giữa hai cạnh MN và MP.

Do đó điều kiện còn lại là điều kiện về cạnh, đó là DE = MP.

Vậy Hình 2d cần thêm điều kiện DE = MP.

Bài 33 trang 78 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE.

Chứng minh:

a) ∆ABC = ∆ADE;

b) DE = BC và DE song song với BC;

c) ∆AEN = ∆ACM;

d) M, A, N thẳng hàng.

Quảng cáo

Lời giải:

Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E

a) Xét ΔABC và ΔADE có:

AB = AD (giả thiết),

BAC^=DAE^ (hai góc đối đỉnh),

AC = AE (giả thiết).

Do đó ΔABC = ∆ADE (c.g.c).

Vậy ΔABC = ∆ADE.

b) Vì ∆ABC = ∆ADE (chứng minh câu a)

Suy ra BC = DE (hai cạnh tương ứng), ACB^=AED^(hai góc tương ứng).

Mặt khác ACB^, AED^ là hai góc ở vị trí so le trong.

Suy ra DE // BC.

Vậy DE = BC và DE song song với BC.

c) Ta có: EN=DE2;MC=BC2;DE=BC nên EN = MC

Xét ∆AEN và ∆ACM có:

AE = AC(giả thiết),

NEA^=MCA^ (do AED^=ACB^ )

EN = CM (chứng minh trên),

Suy ra ∆AEN = ∆ACM (c.g.c)

Vậy ∆AEN = ∆ACM.

d) Do ∆AEN = ∆ACM (chứng minh câu c).

Nên NAE^=MAC^ (hai góc tương ứng)

Ta có: NAM^=NAE^+EAM^=MAC^+EAM^

MAC^+EAM^=EAC^=180° (hai góc kề bù)

Do đó NAM^=180o

Suy ra M, A, N thẳng hàng

Vậy M, A, N thẳng hàng.

Bài 34 trang 78 sách bài tập Toán lớp 7 Tập 2: >Cho điểm M nằm giữa hai điểm O và A. Vẽ các điểm N và B sao cho O là trung điểm của AB và MN. Vẽ tia Ox vuông góc với AB, trên tia Ox lấy điểm K. Chứng minh:

a) ∆KOM = ∆KON;

b) ∆KMA = ∆KNB.

Quảng cáo

Lời giải:

Cho điểm M nằm giữa hai điểm O và A. Vẽ các điểm N và B sao cho O là trung điểm của AB và MN

a) Xét ∆KOM và ∆KON có:

KOM^=KON^ (cùng bằng 90°),

OK là cạnh chung,

OM = ON (do O là trung điểm của MN).

Suy ra ∆KOM = ∆KON (hai cạnh góc vuông).

Vậy ∆KOM = ∆KON.

b) Do ∆KOM = ∆KON (chứng minh câu a).

Suy ra: KMO^=KNO^ (hai góc tương ứng) và KM = KN (hai cạnh tương ứng).

Ta có OA = OM +MA, OB = ON + NB, OA = OB.

Suy ra MA = NB.

Ta có KMO^+KMA^=180° (hai góc kề bù) và KNO^+KNB^=180° (hai góc kề bù).

KMO^=KNO^ (chứng minh trên).

Suy ra KMA^=KNB^ .

Xét ∆KMA và ∆KNB có:

MA = NB (chứng minh trên),

KMA^=KNB^ (chứng minh trên),

KM = KN (chứng minh trên)

Suy ra ∆KMA = ∆KNB (c.g.c).

Vậy ∆KMA = ∆KNB.

Bài 35 trang 78 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có ABC^=53°,BAC^=90° , AH vuông góc với BC (H thuộc BC). Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho BD = HA (Hình 23).

Cho tam giác ABC có góc ABC = 53 độ, góc BAC = 90 độ, AH vuông góc với BC (H thuộc BC). Vẽ tia Bx vuông góc với BC

a) Chứng minh ∆AHB = ∆DBH.

b) Chứng minh DH vuông góc với AC.

c) Tính số đo góc BDH.

Quảng cáo

Lời giải:

a) Xét ∆AHB và ∆DBH có:

AHB^=HBD^ (cùng bằng 90°),

BH là cạnh chung,

AH = BD (giả thiết),

Suy ra ∆AHB = ∆DBH (hai cạnh góc vuông).

Vậy ∆AHB = ∆DBH.

b) Do ∆AHB = ∆DBH (chứng minh câu a) nên ABH^=DHB^ (hai góc tương ứng).

ABH^, DHB^ ở vị trí so le trong

Do đó AB // DH.

Lại có, AB ⊥ AC nên DH ⊥ AC (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại).

Vậy DH ⊥ AC.

c) Do ∆AHB = ∆DBH (chứng minh câu a) nên BAH^=HDB^ (hai góc tương ứng).

Xét tam giác ABH vuông tại H có:

ABH^+BAH^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra BAH^=90°ABH^=90°53°=37° .

Do đó BDH^=37° .

Vậy BDH^=37°.

Bài 36 trang 78 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có góc A nhỏ hơn 90°. Lấy hai điểm M, N nằm ngoài tam giác ABC sao cho MA vuông góc với AB, NA vuông góc với AC và MA = AB, NA = AC. Gọi I, K lần lượt là giao điểm của BN với AC, MC (Hình 24).

Cho tam giác ABC có góc A nhỏ hơn 90 độ. Lấy hai điểm M, N nằm ngoài tam giác ABC

Chứng minh:

a) ∆AMC = ∆ABN;

b) BN vuông góc với CM.

Lời giải:

a) Ta có:

MAC^=MAB^+BAC^=90°+BAC^

NAB^=NAC^+BAC^=90°+BAC^

Suy ra: MAC^=NAB^ .

Xét ∆AMC và ∆ABN có:

MA = AB (giả thiết),

MAC^=BAN^ (chứng minh trên),

AC = AN (giả thiết)

Suy ra ∆AMC = ∆ABN (c.g.c).

Vậy ∆AMC = ∆ABN.

b) Do ∆AMC = ∆ABN (chứng minh câu a)

Suy ra ACM^=ANB^ (hai góc tương ứng).

Mặt khác, KIC^+AIN^ (đối đỉnh).

Suy ra ACM^+KIC^=ANB^+AIN^ .

Xét ∆AIN vuông tại A có: ANI^+AIN^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Hay ANB^+AIN^=90o

Do đó ACM^+KIC^=90° hay ICK^+KIC^=90°

Xét ∆KIC, có: ICK^+KIC^+IKC^=180° (tổng ba góc của một tam giác).

Suy ra IKC^=180°ICK^+KIC^=180°90°=90° .

Do đó BN ⊥ MC.

Vậy BN ⊥ MC.

Lời giải Sách bài tập Toán lớp 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Cánh diều (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Cánh diều khác
Tài liệu giáo viên