Giải SBT Toán 7 trang 7 Tập 1 Chân trời sáng tạo

Với Giải SBT Toán 7 trang 7 Tập 1 trong Bài 1: Tập hợp các số hữu tỉ Sách bài tập Toán lớp 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 7.

Giải SBT Toán 7 trang 7 Tập 1 Chân trời sáng tạo

Bài 1 trang 7 sách bài tập Toán lớp 7 Tập 1: Thay dấu   ?   bằng kí hiệu ∈, ∉ thích hợp.

Thay dấu ? bằng kí hiệu ∈, ∉ thích hợp

Quảng cáo

Lời giải:

Vì −12 là số nguyên âm nên −12 không thuộc tập hợp số tự nhiên.

Do đó 12        ;

Vì −35 là số nguyên âm nên −12 thuộc tập hợp số nguyên.

Do đó 35        ;

Vì −78 là số nguyên âm nên −78 không thuộc tập hợp số tự nhiên.

Do đó 78         ;

Vì 7  8 là số nguyên âm nên 78 không thuộc tập hợp số tự nhiên.

Do đó 78          ;

Vì 7; 8  ℤ; 8 ≠ 0 nên 78 là số hữu tỉ hay 78 thuộc tập hợp ℚ.

Do đó 78          ;

Vì 5,35 là số thập phân nên 5,35 không thuộc tập hợp số nguyên.

Do đó 5,35        ;

Ta có: 2,35=235100 mà −235; 100 ℤ; 100 ≠ 0 nên 235100 là số hữu tỉ.

Do đó 2,35          .

Vậy ta điền vào ô trống như sau:

Thay dấu ? bằng kí hiệu ∈, ∉ thích hợp

Bài 2 trang 7 sách bài tập Toán lớp 7 Tập 1:

a) Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ 47?

814;  814;  1221;  2035;  3662

b) Tìm số đối của mỗi số sau: 15;47 ; −0,275; 0; 213.

Quảng cáo

Lời giải:

a) Ta có:

814=(8):214:2=47; 814=8:214:2=67;

1221=1221=(12):321:3=47; 2035=20:535:5=47=47;

3662=(36):262:2=1831.

Vậy các phân số biểu diễn số hữu tỉ 47 là: 814;  1221;  2035.

b) Số đối của 15 là −15;

Số đối của 4747=47;

Số đối của −0,275 là – (–0,275) = 0,275;

Số đối của 0 là 0;

Số đối của 213213.

Vậy số đối của các số 15; 47; −0,275; 0; 213 lần lượt là −15; 47; 0,275; 0; 213.

Bài 3 trang 7 sách bài tập Toán lớp 7 Tập 1:

a) Các điểm x, y, z trong hình dưới đây biểu diễn số hữu tỉ nào?

Các điểm x, y, z trong hình dưới đây biểu diễn số hữu tỉ nào?

b) Biểu diễn các số hữu tỉ 34;  114;  14;  1,5 trên trục số.

Quảng cáo

Lời giải:

a) 

Các điểm x, y, z trong hình dưới đây biểu diễn số hữu tỉ nào?

Từ điểm 0 đến điểm 1 được chia thành 5 đoạn thẳng bằng nhau, ta được đơn vị mới bằng 15 đơn vị cũ.

∙ Điểm x trong hình trên nằm bên trái điểm 0 và cách 0 một đoạn bằng 6 đơn vị mới.

Do đó điểm x trong hình trên biểu diễn số hữu tỉ 65.

∙ Điểm y trong hình trên nằm bên phải điểm 0 và cách điểm 0 một đoạn bằng 2 đơn vị mới.

Do đó điểm y trong hình trên biểu diễn số hữu tỉ 25.

∙ Điểm z trong hình trên nằm bên phải điểm 0 và cách 0 một đoạn bằng 9 đơn vị mới.

Do đó điểm y trong hình trên biểu diễn số hữu tỉ 95.

Vậy các điểm x, y, z trong hình lần lượt biểu diễn các số hữu tỉ 65; 25; 95.

b) Ta có: 114=54;  1,5=64.

Chia đoạn thẳng đơn vị thành 4 đoạn thẳng bằng nhau, ta được đơn vị mới bằng 14 đơn vị cũ.

∙ Số hữu tỉ 34 nằm bên trái điểm 0 và cách điểm 0 một khoảng bằng 3 đơn vị mới.

∙ Số hữu tỉ 114 hay số hữu tỉ 54 nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 5 đơn vị mới.

∙ Số hữu tỉ 14 nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 1 đơn vị mới.

∙ Số hữu tỉ −1,5 hay số hữu tỉ 64 nằm bên trái điểm 0 và cách điểm 0 một khoảng bằng 6 đơn vị mới.

Vậy biểu diễn các số hữu tỉ 34;  114;  14;  1,5 trên trục số như sau:

Các điểm x, y, z trong hình dưới đây biểu diễn số hữu tỉ nào?

Bài 4 trang 7 sách bài tập Toán lớp 7 Tập 1:

a) Trong các số hữu tỉ sau, số nào là số hữu tỉ dương, số nào là số hữu tỉ âm, số nào không là số hữu tỉ dương cũng không là số hữu tỉ âm?

514;  35;  125;  3;  0176;  0,72

b) Hãy sắp xếp các số trên theo thứ tự từ bé đến lớn.

Quảng cáo

Lời giải:

a) Ta thấy: 514>0;  125>0;

35<0;  3<0;  0,72<0;  0176=0

Vậy các số hữu tỉ dương là 514;  125; các số hữu tỉ âm là 35;  3;  0,72 và số không là số hữu tỉ dương cũng không là số hữu tỉ âm là 0176.

b) Ta có: 0176=0.

∙ Nhóm các số hữu tỉ dương: 514;  125.

514<1125>1 nên 514<125.

∙ Nhóm các số hữu tỉ âm: 35;  3;  0,72.

Ta có: 35=0,6.

Số đối của các số −0,6; −3; −0,72 lần lượt là 0,6; 3; 0,72.

Vì 3 > 0,72 > 0,6 nên −3 < −0,72 < −0,6.

Do đó 3<0,72<35.

Từ đó ta suy ra: 3<0,72<35<0<514<125.

Vậy các số trên được theo thứ tự từ bé đến lớn là 3;0,72;35;0;514;125.

Bài 5 trang 7 sách bài tập Toán lớp 7 Tập 1: So sánh các cặp số hữu tỉ sau:

a) 2335;

b) 0,65 và 1320;

c) −4,85 và −3,48;

d) 129119.

Lời giải:

a) 2335;

Ta có: 23=23=1015; 35=915.

Vì −10 < −9 nên 1015<915 hay 23<35.

Vậy 23<35.

b) 0,65 và 1320;

Ta có 0,65=65100=1320.

Vậy 0,65=1320.

c) −4,85 và −3,48

Số đối của −4,85 và −3,48 lần lượt là 4,85 và 3,48.

Vì 4,85 > 3,48 nên −4,85 < −3,48.

Vậy −4,85 < −3,48.

d) 129119.

Ta có: 129=119; 119=119.

Vậy 129=119.

Lời giải Sách bài tập Toán 7 Bài 1: Tập hợp các số hữu tỉ Chân trời sáng tạo hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Chân trời sáng tạo khác
Tài liệu giáo viên