Giải SBT Toán 7 trang 87 Tập 1 Chân trời sáng tạo
Với Giải SBT Toán 7 trang 87 Tập 1 trong Bài tập cuối chương 4 Sách bài tập Toán lớp 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 87.
Giải SBT Toán 7 trang 87 Tập 1 Chân trời sáng tạo
Bài 1 trang 87 sách bài tập Toán lớp 7 Tập 1:
a) Đo các góc trong Hình 1.
b) Nêu tên các cặp góc kề bù.
Lời giải:
a) Sử dụng thước đo góc ta đo được và
b) Các cặp góc kề bù có trong hình là: kề bù với kề bù với
Bài 2 trang 87 sách bài tập Toán lớp 7 Tập 1: Hãy kể tên các cặp góc đối đỉnh trong Hình 2.
Lời giải:
a) Các cặp góc đối đỉnh trong hình là: và và
b) Các cặp góc đối đỉnh trong hình là: và ; và
c) Trong hình không có cặp góc nào đối đỉnh do chỉ có tia Oa là tia đối của tia Ob nhưng tia Oc không là tia đối của tia Od.
Bài 3 trang 87 sách bài tập Toán lớp 7 Tập 1: Trong Hình 3 cho biết a // b. Tìm số đo các góc đỉnh A và B.
Lời giải:
– Tại đỉnh A:
• Vì và là hai góc đối đỉnh nên
• Vì và là hai góc kề bù nên ta có:
Suy ra
• Vì và là hai góc đối đỉnh nên
– Tại đỉnh B:
Vì a // b nên:
• (hai góc so le trong)
• (hai góc so le trong)
• (hai góc đồng vị)
• (hai góc đồng vị).
Vậy
Bài 4 trang 87 sách bài tập Toán lớp 7 Tập 1: Vẽ hình, viết giả thiết và kết luận của định lí về đường phân giác của hai góc kề bù.
Lời giải:
Hình vẽ minh họa:
Viết giả thiết và kết luận bằng kí hiệu:
Bài 5 trang 87 sách bài tập Toán lớp 7 Tập 1: Cho hình chữ nhật ABCD và đường thẳng d cắt hai cạnh AD và CB như trong Hình 4.
a) Tìm góc đối đỉnh của góc M1.
b) Tìm góc kề bù của góc M1.
c) Tìm góc đồng vị của góc M3.
d) Tìm góc có số đo bằng số đo của góc M1.
Lời giải:
a) Góc đối đỉnh của là
b) Góc kề bù của là
c) Góc đồng vị của là
d) Các góc có số đo bằng số đo của là: (đối đỉnh) và (so le trong).
Bài 6 trang 87 sách bài tập Toán lớp 7 Tập 1: Cho hình thoi ABCD, biết AC là phân giác Hãy chứng tỏ CA là phân giác
Lời giải:
Vì ABCD là hình thoi nên AB // CD và AD // BC.
Do AB // CD nên (hai góc so le trong)
Do AD // BC nên (hai góc so le trong)
Mà AC là tia phân giác của nên
Suy ra
Do đó CA là tia phân giác của
Vậy CA là tia phân giác của
Bài 7 trang 87 sách bài tập Toán lớp 7 Tập 1: Phát biểu giả thiết, kết luận, vẽ hình minh họa và chứng minh định lí: “Nếu một tứ giác có ba góc vuông thì góc còn lại cũng là góc vuông”.
Lời giải:
Hình vẽ minh họa:
Viết giả thiết và kết luận bằng kí hiệu:
Chứng minh định lí:
Vì nên AB ⊥ BC, AB ⊥ AD.
Do đó BC // AD (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song)
Mà nên BC ⊥ CD.
Ta có BC // AD và BC ⊥ CD.
Do đó AD ⊥ CD (một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại).
Suy ra
Vậy
Lời giải sách bài tập Toán lớp 7 Bài tập cuối chương 4 Chân trời sáng tạo hay khác:
Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Chân trời sáng tạo (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST