Giải SBT Toán 7 trang 46 Tập 1 Kết nối tri thức
Với Giải SBT Toán 7 trang 46 Tập 1 trong Bài 11: Định lí và chứng minh định lí Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 46.
Giải SBT Toán 7 trang 46 Tập 1 Kết nối tri thức
Bài 3.27 trang 46 sách bài tập Toán lớp 7 Tập 1: Cho định lí: “Một đường thẳng cắt hai đường thẳng song song thì tạo thành cặp góc so le trong bằng nhau”.
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong tạo thành bằng nhau.
b)
Giả thiết: a // b; c cắt a tại A, c cắt b tại B, tạo thành một cặp góc so le trong .
Kết luận: .
Bài 3.28 trang 46 sách bài tập Toán lớp 7 Tập 1: Cho định lí: “Một đường thẳng cắt hai đường thẳng tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song”.
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng tạo thành cặp góc so le trong bằng nhau.
Kết luận: hai đường thẳng đó song song.
b)
Giả thiết: c cắt a tại A, c cắt b tại B, tạo thành cặp góc so le trong và
Kết luận: a // b.
Bài 3.29 trang 46 sách bài tập Toán lớp 7 Tập 1: Cho định lí: “Tia đối của tia phân giác của một góc là tia phân giác của góc đối đỉnh với góc đó”. Hãy vẽ hình ghi giả thiết, kết luận và chứng minh định lí đó.
Lời giải:
Giả thiết:
- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.
- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.
Kết luận: Ou’ là tia phân giác của góc x’Oy’.
Chứng minh định lí:
Ta có:
và là hai góc đối đỉnh nên = .
và là hai góc đối đỉnh nên = .
Lại có: Ou là tia phân giác của nên = .
Suy ra: = .
Do đó, Ou’ là tia phân giác của .
Vậy Ou’ là tia phân giác của (điều phải chứng minh).
Bài 3.30 trang 46 sách bài tập Toán lớp 7 Tập 1: Vẽ hình minh họa, ghi giả thiết, kết luận bằng kí hiệu và chứng minh mỗi định lí sau:
a) Hai góc cùng phụ với một góc thứ ba thì bằng nhau.
b) Hai góc cùng bù với một góc thứ ba thì bằng nhau.
Lời giải:
Giả thiết:
;
Kết luận:
Chứng minh:
Ta có: suy ra, (1)
suy ra, (2)
Từ (1) và (2) suy ra:
Vậy
b)
Giả thiết: ;.
Kết luận:
Chứng minh:
Ta có: suy ra, (3)
suy ra, (2)
Từ (1) và (2) suy ra:
Vậy
Bài 3.31 trang 46 sách bài tập Toán lớp 7 Tập 1: Cho góc vuông uOv và tia Oy đi qua một điểm trong của góc đó. Vẽ tia Ox sao cho Ou là tia phân giác của góc xOy. Vẽ tia Oz sao cho Ov là tia phân giác của góc yOz. Chứng minh rằng hai góc xOy và yOz là hai góc kề bù.
Lời giải:
Vì Ou là tia phân giác của góc xOy nên . Hay
Vì Ov là tia phân giác của góc yOz nên . Hay
Ta có: .
Mà là góc vuông nên = 90o.
Do đó, (1)
Mà có cạnh chung là Oy (2)
Từ (1) và (2) suy ra là hai góc kề bù.
Bài 3.32 trang 46 sách bài tập Toán lớp 7 Tập 1: Vẽ hình minh họa, ghi giả thiết, kết luận bằng kí hiệu và chứng minh định lí sau: Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng kia.
Lời giải:
Giả thiết: a // b, c cắt a.
Kết luận: c cắt b.
Chứng minh: Giả sử c cắt a tại một điểm A. Nếu c không cắt b thì c song óng với b nên qua điểm A có hai đường thẳng a và c cùng song song với đường thẳng b do đó, theo tiên đề Euclid, c phải trùng với a. Nhưng theo giả thiết, c khác a vì c cắt a, vậy không thể có c không cắt b.
Lời giải sách bài tập Toán lớp 7 Bài 11: Định lí và chứng minh định lí Kết nối tri thức hay khác:
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
SBT Toán 7 Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
SBT Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
SBT Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT