Giải SBT Toán 7 trang 25 Tập 2 Kết nối tri thức

Với Giải SBT Toán 7 trang 25 Tập 2 trong Bài 25: Đa thức một biến Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 25.

Giải SBT Toán 7 trang 25 Tập 2 Kết nối tri thức

Bài 7.8 trang 25 sách bài tập Toán lớp 7 Tập 2: Thu gọn và sắp xếp mỗi đa thức sau đây theo lũy thừa giảm của biến rồi tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.

a) F(x) = −2 + 4x5 − 2x3 − 4x5 + 3x +3;

b) G(x) = −5x3 + 4 −3x + 4x3 + x2 + 6x – 3.

Quảng cáo

Lời giải:

a)F(x) = −2 + 4x5 − 2x3 − 4x5 + 3x +3

= (4x5 − 4x5) − 2x3 + 3x + (−2 + 3)

= −2x3 + 3x + 1.

Kết quả ta được F(x) = −2x3 + 3x + 1.

Vì hạng tử có bậc cao nhất là −2x3, bậc 3, nên F(x) là đa thức bậc 3, hệ số cao nhất là −2 và hệ số tự do là 1.

b)G(x) = −5x3 + 4 −3x + 4x3 + x2 + 6x − 3

= (−5x3 + 4x3) + x2 + (−3x + 6x) + (4 − 3)

= −x3 + x2 + 3x + 1

Kết quả ta được G(x) = −x3 + x2 + 3x + 1

Vì hạng tử có bậc cao nhất là −x3, bậc 3, nên G(x) là đa thức bậc 3, hệ số cao nhất là −1 và hệ số tự do là 1.

Bài 7.9 trang 25 sách bài tập Toán lớp 7 Tập 2: Bằng cách tính giá trị của đa thức F(x) = x3 + 2x2 + x tại các giá trị của x thuộc tập hợp {−2; −1; 0; 1; 0}, hãy tìm hai nghiệm của đa thức F(x).

Quảng cáo

Lời giải:

Ta có: F(−2) = (−2)3 + 2 . (−2)2 − 2 = −8 + 2.4 − 2 = −8 + 8 − 2 = −2.

F(−1) = (−1)3 + 2 . (−1)2 − 1 = −1 + 2.1 − 1 = −1 + 2 − 1 = 0.

F(0) = 03 + 2 . 02 − 0 = 0.

F(2) = (2)3 + 2 . 22 + 2 = 8 + 2.4 + 2 = 8 + 8 + 2 = 18.

Vậy hai nghiệm của đa thức F(x) là x = −1 và x = 0.

Bài 7.10 trang 25 sách bài tập Toán lớp 7 Tập 2: Tìm đa thức P(x) bậc 3 thỏa mãn các điều kiện sau:

• P(x) khuyết hạng tử bậc hai

• Hệ số cao nhất là 4

• Hệ số tự do là 0

• x = 12 là một nghiệm của P(x)

Quảng cáo

Lời giải:

Gọi đa thức P(x) có dạng ax3 + bx2 + cx + d .

Vì P(x) khuyết hạng tử bậc hai nên b = 0, khi đó P(x) = ax3 + cx + d.

Ta có hệ số cao nhất của đa thức P(x) là 4 nên a = 4.

Ta lại có hệ số tự do của đa thức P(x) là 0 nên d = 0.

Do đó P(x) = 4x3 + cx

Vì x = 12 là một nghiệm của P(x) nên

P12= 4 .123 + c .12 = 0

4 .18 + c .12 = 0

12+ c .12 = 0

c = −1.

Vậy P(x) = 4x3 − x.

Bài 7.11 trang 25 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức A(x) = −x4 + 2,5x3 + 3x2 − 4x và B(x) = x4 + 2.

a) Chứng tỏ rằng x = 0 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x).

b) Chứng tỏ rằng đa thức B(x) không có nghiệm.

Quảng cáo

Lời giải:

a) Thay x = 0 vào đa thức A(x), ta được:

A(0) = −04 + 2,5.03 + 3.02 − 4.0 = 0

Do đó x = 0 là nghiệm của đa thức A(x).

Thay x = 0 vào đa thức B(x) ta được:

B(0) = 04 +2 = 2≠ 0

Do đó x = 0 không là nghiệm của đa thức B(x).

b) Ta biết bằng x4 ≥ 0 với mọi giá trị của x.

Do đó B(x) = x4 +22 > 0 với mọi giá trị của x.

Vậy B(x) không có nghiệm.

Bài 7.12 trang 25 sách bài tập Toán lớp 7 Tập 2: Biết rằng hai đa thức G(x) = x2 −3x + 2 và H(x) = x2 + x − 6 có một nghiệm chung. Hãy tìm nghiệm chung đó.

Lời giải:

Giả sử a là nghiệm chung của cả hai đa thức, ta có: G(a) = H(a) = 0

Ta có: G(a) = a2 −3a + 2 và H(a) = a2 + a − 6

Từ đó suy ra:

(a2 − 3a + 2) − (a2 + a − 6) = G(a) − H(a) = 0

Thu gọn vế trái ta được:

a2 − 3a + 2 − a2 − a + 6 = (a2 − a2) + (−3a − a) + (2 + 6)= −4a + 8 = 0.

Suy ra a = 2.

Thử lại bằng cách tính G(2) và H(2), ta thấy x = 2 đúng là nghiệm của cả hai đa thức G(x) và H(x).

Bài 7.13 trang 25 sách bài tập Toán lớp 7 Tập 2: Người ta định dùng những viên gạch với kích thước như nhau để xây một bức tường (có dạng hình hộp chữ nhật) dày 20 cm, dài 6m và cao x (m). Số gạch đã có là 450 viên.

a) Tìm đa thức (biến x) biểu thị số gạch cần mua thêm để xây tường, biết rằng cứ xây mỗi mét khối tường thì cần 542 viên gạch. Xác định bậc và hệ số tự do của đa thức đó.

b) Nếu chỉ dùng số gạch sẵn có thì xây được bức tường cao khoảng bao nhiêu mét? (tính chính xác đến 0,1 m).

Lời giải:

a) Đổi 20cm = 0,2 m

Bức tường có dạng hình hộp chữ nhật với ba kích thước là 0,2 m; 6 m và x (m) (x > 0).

Thể tích của nó là: 0,2.6.x = 1,2x (m3).

Mỗi mét khối tường xây hết 542 viên gạch nên số gạch cần dùng để xây bức tường là: 542.1,2x = 650,4x (viên).

Số gạch đã có là 450 viên.

Vậy số gạch cần mua thêm là:

F(x) = 650,4x − 450.

b) Nếu chỉ dùng số gạch sẵn có để xây tường thì số gạch mua thêm là 0, tức là:

650,4x – 450 = 0

Từ đó ta tính được:

x = 450 : 650,4 ≈ 0,7 (m).

Vậy nếu chỉ dùng số gạch có sẵn thì xây được bức tường cao khoảng 0,7 m.

Bài 7.14 trang 25 sách bài tập Toán lớp 7 Tập 2: Tìm các hệ số p và q của đa thức F(x) = x2 + px + q, biết rằng với số a tùy ý, giá trị của F(x) tại x = a, tức là F(a) luôn bằng (a + 2)2.

Lời giải:

Theo đề bài, với a là một số tùy ý, ta luôn có:

a2 + pa + q = (a + 2)2 (1)

Chọn a = 0 thì phương trình (1) trở thành :

0 + 0p + q = (2 + 2)2 suy ra q = 4

Khi đó F(a) = a2 + pa + 4 = (a + 2)2 (2)

Chọn a = 1 thì phương trình (2) trở thành:

12 + p.1 + 4 = (1 + 2)2

1 + p + 4 = 32

p = 9 − 1 − 4 = 4

Vậy q = 4 và p = 4.

Lời giải sách bài tập Toán lớp 7 Bài 25: Đa thức một biến Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên