Giải SBT Toán 7 trang 58 Tập 2 Kết nối tri thức
Với Giải SBT Toán 7 trang 58 Tập 2 trong Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 58.
Giải SBT Toán 7 trang 58 Tập 2 Kết nối tri thức
Bài 9.19 trang 58 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông. Kẻ đường thẳng vuông góc với cạnh huyền BC của tam giác ABC tại điểm D không thuộc đoạn BC. Nó cắt đường thẳng chứa cạnh AB tại E và cắt đường thẳng chứa cạnh AC tại F. Xác định trực tâm của tam giác BEF.
Lời giải:
Trong tam giác BEF, đường cao xuất phát từ B là đường thẳng BD, đường cao xuất phát từ F là đường thẳng FA.
Hai đường cao BD và FA cắt nhau tại C.
Vậy C là trực tâm của tam giác BEF.
Bài 9.20 trang 58 sách bài tập Toán lớp 7 Tập 2: Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM, gọi N là điểm sao cho Oy là đường trung trực của đoạn thẳng PN. Đường thẳng MN cắt Ox tại R, cắt Oy tại S. Chứng minh tia PO là tia phân giác của góc RPS.
Lời giải:
Tam giác OPM là tam giác cân tại O (vì Ox là đường trung trực của đoạn thẳng PM).
Suy ra (1) và OM = OP.
Lại có tam giác RPM là tam giác cân tại R (vì Ox, hay chính là Rx là đường trung trực của đoạn thẳng PM).
Suy ra (2)
Trừ vế với vế của (1) cho (2) ta có: .
Hay (*)
Tương tự ta có tam giác OPN là tam giác cân tại O (vì Oy là đường trung trực của đoạn thẳng PN).
Suy ra (3) và ON = OP.
Lại có tam giác SPN là tam giác cân tại R (vì Oy, hay chính là Sy là đường trung trực của đoạn thẳng PN).
Suy ra (4)
Trừ vế với vế của (3) cho (4) ta có: .
Hay (**)
Vì OM = ON (= OP) nên tam giác OMN là tam giác cân tại O.
Do đó: (***)
Từ (*), (**), (***) ta suy ra .
Vậy suy ra PO là tia phân giác của góc RPS (đpcm).
Bài 9.21 trang 58 sách bài tập Toán lớp 7 Tập 2: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh .
Lời giải:
Gọi BJ là đường cao xuất phát từ B của tam giác ABC.
Xét hai tam giác AHJ và tam giác BCJ có:
AH = BC (gt)
(hai góc cùng phụ với )
Do đó ∆AHJ = ∆BCJ (cạnh huyền – góc nhọn).
Suy ra AJ = BJ (hai cạnh tương ứng).
Xét tam giác JAB vuông tại J có AJ = BJ (cmt) nên JAB là tam giác vuông cân tại J.
Vậy (đpcm).
Bài 9.22 trang 58 sách bài tập Toán lớp 7 Tập 2:
a) Giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Chứng minh AC > AB.
b) Hỏi đảo lại có đúng không tức là nếu tam giác ABC có AC > AB thì đường trung trực d của cạnh BC có cắt AC tại điểm nằm giữa A và C không?
c) Vẫn giả sử đường trung trực d của cạnh BC của tam giác ABC cắt cạnh AC tại một điểm D nằm giữa A và C. Với M là một điểm tùy ý thuộc d, M khác D, hãy chứng minh MA + MB > DA + DB.
Lời giải:
a) Nếu đường trung trực d của cạnh BC cắt cạnh AC tại điểm D nằm giữa A và C thì ta có DB = DC (do D nằm trên đường trung trực của canh BC thì sẽ cách đều hai đầu mút).
Từ đó ta có: AC = AD + DC = AD + DB (1)
Trong tam giác ABD, theo bất đẳng thức tam giác, ta có: AD + DB > AB (2)
Vậy từ (1) và (2) ta suy ra được: AC > AB (đpcm).
b) Điều đảo lại cũng hoàn toàn đúng. Thật vậy,
Đường trung trưc của BC không thể đi qua A vì nếu thế thì AB = AC (trái với giải thiết)
Vậy nên đường trung trực d phải cắt đoạn thẳng AB tại điểm nằm giữa A và B.
Để đường trung trực d phải cắt đoạn thẳng AB tại điểm nằm giữa A và B thì chứng minh tương tự câu a) ta dễ dàng suy ra được AB > AC (trái với giả thiết)
Và đường trung trực d phải cắt đoạn thẳng AC tại điểm nằm giữa A và C
Để đường trung trực d phải cắt đoạn thẳng AC tại điểm nằm giữa A và C thì chứng minh tương tự câu a) ta dễ dàng suy ra được AC > AB (đúng với giả thiết)
Vậy suy ra đường trung trực d của cạnh BC cắt AC tại điểm nằm giữa A và C nếu AC > AB.
c) M nằm trên đường trung trực của đoạn thẳng BC nên ta có MB = MC
Suy ra MA + MB = MA + MC (3)
Mà áp dụng bất đẳng thức tam giác vào tam giác MAC ta có MA + MC > AC
Hay MA + MC > AD + DC (4)
Từ (3) và (4) ta suy ra được MA + MB > DA + DC (đpcm).
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT