Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn, Vẽ hai tiếp tuyến tại A và B

Giải SBT Toán 9 Bài 4: Góc ở tâm. Góc nội tiếp - Cánh diều

Bài 32 trang 116 SBT Toán 9 Tập 1: Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn. Vẽ hai tiếp tuyến tại A và B của đường tròn (O), hai tiếp tuyến đó cắt nhau tại M.

a) Tính số đo cung nhỏ AB và số đo cung lớn AB nếu AMB^=40°.

b) Tính diện tích của tứ giác OAMB theo R nếu số đo cung nhỏ AB bằng 120°.

Quảng cáo

Lời giải:

Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn, Vẽ hai tiếp tuyến tại A và B

a) (Hình a) Vì MA, MB là các tiếp tuyến của đường tròn (O) nên MA ⊥ OA và MB ⊥ OB.

Xét tứ giác OAMB có: AOM^+AMB^+OBM^+AOB^=360°

Suy ra AOB^=360°AOM^AMB^OBM^=360°90°40°90°=140°.

Do đó số đo cung nhỏ AB bằng số đo của góc ở tâm AOB, bằng 140° và số đo cung lớn AB bằng 360° ‒ 140° = 220°.

b) (Hình b) Do số đo cung nhỏ AB bằng 120° suy ra AOB^=120°.

Lại có MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và OM là tia phân giác của góc AOB nên AOM^=12AOB^=12120°=60°.

Do tam giác OAM vuông tại A nên MA=OAtanAOM^=R3.

Xét ∆OAM và ∆OBM có: OA = OB; MA = MB; OM là cạnh chung

Do đó ∆OAM = ∆OBM (c.c.c) nên S∆OAM = S∆OAM­

Suy ra SOAMB = S∆OAM + S∆OBM­ = 2SOAM.

Vậy SOAMB=212OAMA=212RR3=R23 (đơn vị diện tích).

Quảng cáo

Lời giải SBT Toán 9 Bài 4: Góc ở tâm. Góc nội tiếp hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên