Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M

Giải sách bài tập Toán 9 Bài tập cuối chương 5 - Chân trời sáng tạo

Bài 18 trang 101 sách bài tập Toán 9 Tập 1: Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ cắt đường tròn (O) tại điểm thứ hai D và cắt đường thẳng AM tại E. Gọi F là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ADE với AC và N là giao điểm thứ hai của AN với (O). Chứng minh rằng:

a) O’M // ON.

b) Ba điểm D, N, F thẳng hàng.

c) DF là tia phân giác của góc BDC^.

Quảng cáo

Lời giải:

Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M

a) Xét ∆O’AM cân tại O’ (do O’A = O’M) nên O'AM^=O'MA^.

Xét ∆OAN cân tại O (do OA = ON) nên OAN^=ANO^.

Do đó O'MA^=ONA^, mà hai góc này ở vị trí đồng vị, suy ra O’M // ON.

b) Do BC là tiếp tuyến của (O’) nên O’M ⊥ BC.

Mà O’M // ON nên ON ⊥ BC.

Xét ∆OBC cân tại O (do OB = OC) nên đường cao ON đồng thời là đường phân giác của tam giác, hay BON^=CON^,  do đó BN=NC hay N là điểm chính giữa cung BC.

Mặt khác NAC^=NDC^=12NC (hai góc nội tiếp cùng chắn cung NC của đường tròn (O)) và BDN^=12BN (góc nội tiếp chắn cung BN của đường tròn (O))

Do đó BDN^=NAC^=EAF^. (1)

Trong đường tròn ngoại tiếp tam giác ADE, ta có:

EAF^=EDF^=BDF^ (góc nội tiếp cùng chắn cung EF).  (2)

Từ (1), (2) ta có BDF^=BDN^,  suy ra D, N, F thẳng hàng.

c) Ta có hai cung BN và NC có số đo bằng nhau, suy ra BDN^=NDC^ (hai góc nội tiếp chắn hai cung bằng nhau) hay DF là tia phân giác của BDC^.

Quảng cáo

Lời giải SBT Toán 9 Bài tập cuối chương 5 hay khác:

Quảng cáo
Quảng cáo

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Chân trời sáng tạo của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Chân trời sáng tạo khác
Tài liệu giáo viên