Bài 3 trang 109 Toán 11 Tập 1 Cánh diều

Giải Toán 11 Bài 4: Hai mặt phẳng song song - Cánh diều

Bài 3 trang 109 Toán 11 Tập 1: Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.

Quảng cáo

a) Chứng minh rằng (G1G2G3) // (BCD).

b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).

Lời giải:

a)

Bài 3 trang 109 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.

Trong mp(ABC), xét ABC có G1 là trọng tâm của tam giác nên AG1AM=23 ;

Trong mp(ACD), xét ACD có G2 là trọng tâm của tam giác nên AG2AN=23 ;

Trong mp(ABD), xét ABD có G3 là trọng tâm của tam giác nên AG3AP=23 .

Trong mp(AMP), xét AMP có AG1AM=AG3AP=23  nên G1G3­ // MP (theo định lí Thalès đảo).

Mà MP ⊂ (BCD) nên G1G3­ // (BCD).

Chứng minh tương tự ta cũng có AG2AN=AG3AP=23  nên G2G3 // NP (theo định lí Thalès đảo).

Mà NP ⊂ (BCD) nên G2G3­ // (BCD).

Ta có: G1G3­ // (BCD);

           G2G3­ // (BCD);

           G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).

Do đó (G1G2G3) // (BCD).

b)

Bài 3 trang 109 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.

Giả sử (ABD) ∩ (G1G2G3) = d.

Ta có: (G1G2G3) // (BCD);

           (ABD) ∩ (BCD) = BD;

           (ABD) ∩ (G1G2G3) = d.

Suy ra d // BD.

Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G là giao điểm của (G1G2G3) và (ABD).

Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.

Vậy (G1G2G3) ∩ (ABD) = IK.

Quảng cáo

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng song song hay, chi tiết khác:

Quảng cáo
Quảng cáo

Các bài học để học tốt Toán 11 Bài 4: Hai mặt phẳng song song:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên