Giải Toán 11 trang 6 Tập 2 Cánh diều

Với Giải Toán 11 trang 6 Tập 2 trong Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 6.

Giải Toán 11 trang 6 Tập 2 Cánh diều

Quảng cáo

Luyện tập 3 trang 6 Toán 11 Tập 2: Trong bài toán ở Luyện tập 2, lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy có tám nhóm ứng với tám nửa khoảng:

[25; 34); [34; 43); [43; 52); [52; 61); [61; 70); [70; 79); [79; 88); [88; 97).

Lời giải:

Bảng tần số ghép nhóm bao gồm cả tần số tích lũy như sau:

Nhóm

Tần số

Tấn số tích lũy

[25; 34)

3

3

[34; 43)

3

6

[43; 52)

6

12

[52; 61)

5

17

[61; 70)

4

21

[70; 79)

3

24

[79; 88)

4

28

[88; 97)

2

30

 

n = 30

 

Quảng cáo

Hoạt động 4 trang 6 Toán 11 Tập 2: Xét mẫu số liệu trong Ví dụ 2 được cho dưới dạng bảng tần số ghép nhóm (Bảng 4).

Nhóm

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

6

12

10
5

3

 

n = 36

Bảng 4

a) Tìm trung điểm x1 của nửa khoảng (tính bằng trung bình cộng của hai đầu mút) ứng với nhóm 1. Ta gọi trung điểm x1giá trị đại diện của nhóm 1.

b) Bằng cách tương tự, hãy tìm giá trị đại diện của bốn nhóm còn lại. Từ đó, hãy hoàn thiện các số liệu trong Bảng 7.

Quảng cáo

Nhóm

Giá trị đại diện

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

x1 = ?

x2 = ?

x3 = ?

x4 = ?

x5 = ?

n1 = ?

n2 = ?

n3 = ?

n4 = ?

n5 = ?

 

 

n = ?

Bảng 7

c) Tính giá trị x¯ cho bởi công thức sau: x¯=n1x1+n2x2++n5x5n.

Giá trị x¯ gọi là số trung bình cộng của mẫu số liệu đã cho.

Lời giải:

a) Trung điểm x1 (giá trị đại diện) của nửa khoảng ứng với nhóm 1 là:

x1160+1632 = 161,5.

Quảng cáo

b) Giá trị đại diện của nửa khoảng ứng với nhóm 2 là:

x2163+1662 = 164,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 3 là:

x3166+1692 = 167,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 4 là:

x4169+1722 = 170,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 5 là:

x5172+1752 = 173,5.

Ta hoàn thiện được Bảng 7 như sau:

Nhóm

Giá trị đại diện

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

x1 = 161,5

x2 = 164,5

x3 = 167,5

x4 = 170,5

x5 = 173,5

n1 = 6

n2 = 12

n3 = 10

n4 = 5

n5 = 3

 

 

n = 36

c) Số trung bình cộng của mẫu số liệu đã cho là:

x¯=6161,5+12164,5+10167,5+5170,5+3173,536 = 166,41(6).

Lời giải bài tập Toán 11 Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên