Giải Toán 11 trang 82 Tập 1 Kết nối tri thức
Với Giải Toán 11 trang 82 Tập 1 trong Bài 11: Hai đường thẳng song song Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 82.
Giải Toán 11 trang 82 Tập 1 Kết nối tri thức
Luyện tập 4 trang 82 Toán 11 Tập 1: Trong Ví dụ 4, hãy xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).
Lời giải:
Hai mặt phẳng (SAD) và (SBC) có điểm chung S và chứa hai đường thẳng song song là AD và BC. Do đó, giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng n đi qua S và song song với AD, BC.
Vận dụng 2 trang 82 Toán 11 Tập 1: Một bể kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26. Giải thích tại sao đường mép nước AB song song với cạnh CD của bể nước.
Lời giải:
Giả sử mặt phẳng (ABFE) mà mặt nước, mặt phẳng (EFCD) là mặt đáy của bể kính và (ABCD) là một mặt bên của bể kính.
Ba mặt phẳng (ABFE), (EFCD) và (ABCD) là ba mặt phẳng đôi một cắt nhau theo các giao tuyến EF, AB và CD. Vì DC // EF (do đáy của bể là hình chữ nhật) nên ba đường thẳng EF, AB và CD đôi một song song. Vậy đường mép nước AB song song với cạnh CD của bể nước.
Bài 4.9 trang 82 Toán 11 Tập 1: Trong không gian, cho ba đường thẳng a, b, c. Những mệnh đề nào sau đây là đúng?
a) Nếu a và b không cắt nhau thì a và b song song.
b) Nếu b và c chéo nhau thì b và c không cùng thuộc một mặt phẳng.
c) Nếu a và b cùng song song với c thì a song song với b.
d) Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau.
Lời giải:
a) Mệnh đề a) là mệnh đề sai vì nếu a và b không cắt nhau thì a và b có thể song song hoặc chéo nhau.
b) Mệnh đề b) là mệnh đề đúng (theo định nghĩa hai đường thẳng chéo nhau).
c) Mệnh đề c) là mệnh đề sai vì hai đường thẳng a và b có thể trùng nhau.
d) Mệnh đề d) là mệnh đề sai vì a và c có thể cắt nhau hoặc chéo nhau hoặc song song hoặc trùng nhau.
Bài 4.10 trang 82 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau, cặp đường thẳng nào song song, cặp đường thẳng nào chéo nhau?
a) AB và CD;
b) AC và BD;
c) SB và CD.
Lời giải:
a) Hai đường thẳng AB và CD song song với nhau do đáy ABCD là hình bình hành.
b) Hai đường thẳng AC và BD cắt nhau do đây là hai đường chéo của hình bình hành ABCD.
c) Hai đường thẳng SB và CD chéo nhau.
Thật vậy, nếu hai đường thẳng SB và CD không chéo nhau, tức là hai đường thẳng này đồng phẳng hay bốn điểm S, B, C, D đồng phẳng, trái với giả thiết S.ABCD là hình chóp.
Bài 4.11 trang 82 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD (H.4.27). Chứng minh rằng tứ giác MNPQ là hình bình hành.
Lời giải:
Xét tam giác SAB có M và N lần lượt là trung điểm của các cạnh SA và SB nên MN là đường trung bình của tam giác SAB, suy ra MN // AB và MN = AB.
Tương tự ta có PQ là đường trung bình của tam giác SCD nên PQ // CD và PQ = CD.
Lại có đáy ABCD là hình bình hành nên AB // CD và AB = CD.
Khi đó, MN // PQ và MN = PQ. Vậy tứ giác MNPQ là hình bình hành.
Bài 4.12 trang 82 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng tứ giác MNCD là hình thang.
Lời giải:
Xét tam giác SAB có M và N lần lượt là trung điểm của các cạnh SA và SB nên MN là đường trung bình của tam giác SAB, suy ra MN // AB.
Mà đáy ABCD là hình thang có AB // CD.
Do đó, MN // CD. Vậy tứ giác MCD là hình thang.
Bài 4.13 trang 82 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là trung điểm của đoạn thẳng SD (H.4.28).
a) Xác định giao tuyến của mặt phẳng (MAB) và (SCD).
b) Gọi N là giao điểm của đường thẳng SC và mặt phẳng (MAB). Chứng minh rằng MN là đường trung bình của tam giác SCD.
Lời giải:
a) Vì M thuộc SD nằm trong mặt phẳng (SCD) nên M thuộc mặt phẳng (SCD).
Mà M thuộc mặt phẳng (MAB) nên M là điểm chung của hai mặt phẳng (MAB) và (SCD).
Lại có hai mặt phẳng (MAB) và (SCD) chứa hai đường thẳng song song AB và CD.
Do đó, giao tuyến của hai mặt phẳng (MAB) và (SCD) là đường thẳng m đi qua M và song song với AB, CD.
b) Trong tam giác SCD, đường thẳng m đi qua điểm M và song song với CD cắt cạnh SC tại một điểm N.
Vì N thuộc m và m nằm trong mặt phẳng (MAB) nên N thuộc mặt phẳng (MAB).
Vậy N là giao điểm của đường thẳng SC và mặt phẳng (MAB).
Xét tam giác SCD có M là trung điểm của SD, MN // CD và N thuộc SC nên đường thẳng MN là đường trung bình của tam giác SCD.
Lời giải bài tập Toán 11 Bài 11: Hai đường thẳng song song hay khác:
- Giải Toán 11 trang 78
- Giải Toán 11 trang 79
- Giải Toán 11 trang 80
- Giải Toán 11 trang 81
- Giải Toán 11 trang 83
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT