Giải Toán 11 trang 87 Tập 1 Kết nối tri thức

Với Giải Toán 11 trang 87 Tập 1 trong Bài 12: Đường thẳng và mặt phẳng song song Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 87.

Giải Toán 11 trang 87 Tập 1 Kết nối tri thức

Quảng cáo

Luyện tập 4 trang 87 Toán 11 Tập 1: Trong Ví dụ 4, gọi (Q) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (Q) với các mặt của tứ diện.

Lời giải:

Luyện tập 4 trang 87 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Mặt phẳng (ABC) chứa đường thẳng AB song song với mặt phẳng (Q) nên mặt phẳng (ABC) cắt mặt phẳng (Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).

Mặt phẳng (ACD) chứa đường thẳng AD song song với mặt phẳng (Q) nên mặt phẳng (ACD) cắt mặt phẳng (Q) theo giao tuyến song song với AD. Vẽ EN // AD (N thuộc CD) thì EN là giao tuyến của (Q) và (ACD). Khi đó FN là giao tuyến của (Q) và (BCD).

Quảng cáo

Bài 4.16 trang 87 Toán 11 Tập 1: Trong không gian, cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?

a) Nếu a và (P) có điểm chung thì a không song song với (P).

b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.

c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).

d) Nếu a và b song song với (P) thì a song song với b.

Lời giải:

a) Mệnh đề a) là mệnh đề đúng vì nếu a và (P) có điểm chung thì a cắt (P) hoặc a nằm trong (P) nên a không song song với (P).

b) Mệnh đề b) là mệnh đề sai vì nếu a và (P) có điểm chung thì a và (P) cắt nhau hoặc a nằm trong (P).

c) Mệnh đề c) là mệnh đề sai vì a có thể nằm trong (P).

d) Mệnh đề d) là mệnh đề sai vì a và b có thể cắt nhau.

Quảng cáo

Bài 4.17 trang 87 Toán 11 Tập 1: Cho hai tam giác ABC và ABD không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trung điểm của các cạnh AC, AD.

a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.

b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.

Lời giải:

CBài 4.17 trang 87 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Vì M là trung điểm của cạnh AC nên đường thẳng AM chứa điểm C.

Lại có điểm C thuộc mặt phẳng (BCD) và điểm A không thuộc mặt phẳng (BCD) (do bốn điểm A, B, C, D không đồng phẳng). Do đó, đường thẳng AM cắt mặt phẳng (BCD) tại điểm C. Vậy đường thẳng AM không song song với mặt phẳng (BCD).

Quảng cáo

b) Vì M, N lần lượt là trung điểm của các cạnh AC, AD nên MN là đường trung bình của tam giác ACD, suy ra MN // CD.

Lại có đường thẳng CD nằm trong mặt phẳng (BCD) và đường thẳng MN không nằm trong mặt phẳng (BCD).

Vậy đường thẳng MN song song với mặt phẳng (BCD).

Bài 4.18 trang 87 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của hai cạnh BC, CD. Chứng minh rằng đường thẳng BD song song với mặt phẳng (AMN).

Lời giải:

Bài 4.18 trang 87 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vì M, N lần lượt là trung điểm của hai cạnh BC, CD nên MN là đường trung bình của tam giác BCD, suy ra MN // BD.

Mà đường thẳng MN nằm trong mặt phẳng (AMN).

Do đó, đường thẳng BD song song với mặt phẳng (AMN).

Bài 4.19 trang 87 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

Lời giải:

Bài 4.19 trang 87 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

+) Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (SAB) cắt mặt phẳng (P) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).

+) Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (SAD) cắt mặt phẳng (P) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).

+) Trong mặt phẳng (SCD), qua G vẽ đường thẳng song song với CD cắt SC tại H.

Ta có: GH // CD và CD // AB nên GH // AB, do đó GH nằm trong mặt phẳng (P).

Vì G thuộc SD nên G thuộc mặt phẳng (SCD) và H thuộc SC nên H thuộc mặt phẳng (SCD), do đó GH nằm trong mặt phẳng (SCD).

Vậy GH là giao tuyến của (P) và (SCD).

+) Nối H với F, ta có H thuộc SC nên H thuộc mặt phẳng (SBC). Vì F thuộc SB nên F thuộc mặt phẳng (SBC). Do đó, HF nằm trong mặt phẳng (SBC).

Lại có H và F đều thuộc (P) nên HF nằm trong mặt phẳng (P).

Vậy HF là giao tuyến của (P) và (SBC).

+) Ta có: EF // AB và GH // AB nên EF // GH, do vậy tứ giác EFHG là hình thang.

Bài 4.20 trang 87 Toán 11 Tập 1: Bạn Nam quan sát thấy dù cửa ra vào được mở ở vị trí nào thì mép trên của cửa luôn song song với một mặt phẳng cố định. Hãy cho biết đó là mặt phẳng nào và giải thích tại sao.

Bài 4.20 trang 87 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải:

Cánh cửa có dạng hình chữ nhật nên mép trên cửa song song với mép dưới cửa. Mà mép dưới của cửa luôn tạo với mặt sàn một đường thẳng, do đó mép trên của cửa luôn song song với mặt sàn nhà.

Lời giải bài tập Toán 11 Bài 12: Đường thẳng và mặt phẳng song song hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên