Luyện tập 4 trang 101 Toán 12 Tập 2 Cánh diều

Giải Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes - Cánh diều

Luyện tập 4 trang 101 Toán 12 Tập 2: Được biết có 5% đàn ông bị mù màu, và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu?

Quảng cáo

Lời giải:

Xét hai biến cố:

A: “Người được chọn là đàn ông”;

B: “Người được chọn bị mù màu”.

Theo bài ra ta có: P(B | A) = 0,05; P(B | A¯) = 0,0025.

Vì số đàn ông bằng số phụ nữ nên ta có P(A) = 0,5 và P(A¯ ) = 1 – 0,5 = 0,5.

Áp dụng công thức Bayes, ta có xác suất để một người mù màu được chọn là đàn ông là: P(A | B) = PAPB|APAPB|A+PA¯PB|A¯=0,50,050,50,05+0,50,0025≈ 0,9524.

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên