Luyện tập 4 trang 83 Toán 12 Tập 2 Cánh diều

Giải Toán 12 Bài 3: Phương trình mặt cầu - Cánh diều

Luyện tập 4 trang 83 Toán 12 Tập 2: Chứng minh rằng phương trình

Quảng cáo

x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.

Lời giải:

Cách 1:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 – 2 ∙ 3 ∙ x + 9 + y2 – 2 ∙ 1 ∙ y + 1 + z2 – 2 ∙ 2 ∙ z + 4 = 9 + 1 + 4 + 11

⇔ (x – 3)2 + (y – 1)2 + (z – 2)2 = 25.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = 25 = 5.

Cách 2:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 + y2 + z2 – 2 ∙ 3 ∙ x – 2 ∙ 1 ∙ y – 2 ∙ 2 ∙ z – 11 = 0

Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = 25 = 5.

Quảng cáo

Lời giải bài tập Toán 12 Bài 3: Phương trình mặt cầu hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Săn shopee giá ưu đãi :

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên