Giải Toán 12 trang 93 Tập 1 Cánh diều
Với Giải Toán 12 trang 93 Tập 1 trong Bài tập cuối chương 3 Toán 12 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 93.
Giải Toán 12 trang 93 Tập 1 Cánh diều
Bài 1 trang 93 Toán 12 Tập 1: Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là Q1, Q2, Q3. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng:
A. 2Q2.
B. Q1 – Q3.
C. Q3 – Q1.
D. Q3 + Q1 – Q2.
Lời giải:
Đáp án đúng là: C
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1.
Bài 2 trang 93 Toán 12 Tập 1: Bảng 22, Bảng 23 lần lượt biểu diễn mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình các tháng năm 2021 tại Hà Nội và Huế (đơn vị: độ C).
a) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Hà Nội và Huế.
b) Trong hai thành phố Hà Nội và Huế, thành phố nào có nhiệt độ không khí trung bình tháng đồng đều hơn?
Lời giải:
a)
* Hà Nội
- Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
R = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
-Từ Bảng 22 ta có bảng thống kê sau:
Số phần tử của mẫu là n = 12.
+ Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
+ Ta có: > mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C).
- Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là:
∙ [2 ∙ (18,3 – 24,8)2 + 3 ∙ (21,3 – 24,8)2 + 2 ∙ (24,3 – 24,8)2
+ 1 ∙ (27,3 – 24,8)2 + 4 ∙ (30,3 – 24,8)2] = = 20,75.
- Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
* Huế
- Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C).
- Từ Bảng 23 ta có bảng thống kê sau:
Số phần tử của mẫu là n = 12.
+ Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(độ C).
+ Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(độ C).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C).
- Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
(độ C).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là:
∙ [1 ∙ (18,3 – 25,8)2 + 2 ∙ (21,3 – 25,8)2 + 3 ∙ (24,3 – 25,8)2
+ 2 ∙ (27,3 – 25,8)2 + 4 ∙ (30,3 – 25,8)2] = = 15,75.
- Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C).
b) Vì s' ≈ 3,97 < s ≈ 4,56 nên thành phố Huế có nhiệt độ không khí trung bình tháng đồng đều hơn thành phố Hà Nội.
Bài 3 trang 93 Toán 12 Tập 1: Bảng 24 thống kê độ ẩm không khí trung bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %).
a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau:
[75; 78,3), [78,3; 81,6), [81,6; 84,9), [84,9; 88,2), [88,2; 91,5).
b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu.
c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?
Lời giải:
a) Từ Bảng 24, ta có các bảng thống kê sau:
b)
* Đà Lạt
- Khoảng biến thiên của mẫu số liệu ghép nhóm của Đà Lạt là:
R = 91,5 – 78,3 = 13,2 (%).
-Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Đà Lạt:
Số phần tử của mẫu là n = 12.
- Ta có: mà 2 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [81,6; 84,9) có s = 81,6; h = 3,3; n2 = 1 và nhóm 1 là nhóm [78,3; 81,6) có cf1 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(%).
- Ta có: mà 3 < 9 < 10. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 3 là nhóm [84,9; 88,2) có t = 84,9; l = 3,3; n3 = 7 và nhóm 2 là nhóm [81,6; 84,9) có cf2 = 3.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(%).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Đà Lạt là:
∆Q = Q3 – Q1 = 87,7 – 84,9 = 2,8 (%).
- Số trung bình cộng của mẫu số liệu ghép nhóm của Đà Lạt là:
(%).
Vậy phương sai của của mẫu số liệu ghép nhóm của Đà Lạt là:
∙ [2 ∙ (79,95 – 85,725)2 + 1 ∙ (83,25 – 85,725)2 + 7 ∙ (86,55 – 85,725)2 + 2 ∙ (89,85 – 85,725)2] = ≈ 9,3.
- Độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt là: (%).
* Vũng Tàu
- Khoảng biến thiên của mẫu số liệu ghép nhóm của Vũng Tàu là:
R' = 84,9 – 75 = 9,9 (%).
- Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Vũng Tàu:
Số phần tử của mẫu là n = 12.
+ Ta có: mà 5 > 3. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 1 là nhóm [75; 78,3) có s = 75; h = 3,3; n1 = 5.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(%).
+ Ta có: mà 5 < 9 < 11. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 2 là nhóm [78,3; 81,6) có t = 78,3; l = 3,3; n2 = 6 và nhóm 1 là nhóm [75; 78,3) có cf1 = 5.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(%).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Vũng Tàu là:
∆'Q = Q'3 – Q'1 = 80,5 – 76,98 = 3,52 (%).
- Số trung bình cộng của mẫu số liệu ghép nhóm của Vũng Tàu là:
(%).
Vậy phương sai của của mẫu số liệu ghép nhóm của Vũng Tàu là:
∙ [5 ∙ (76,65 – 78,85)2 + 6 ∙ (79,95 – 78,85)2 + 1 ∙ (83,25 – 78,85)2]
= = 4,235.
- Độ lệch chuẩn của mẫu số liệu ghép nhóm của Vũng Tàu là: (%).
c) Vì s' ≈ 2,06 < s ≈ 3,05 nên thành phố Vũng Tàu có độ ẩm không khí trung bình tháng đồng đều hơn thành phố Đà Lạt.
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều