Bài 14 trang 66 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài tập cuối chương 2 - Chân trời sáng tạo

Bài 14 trang 66 Toán 12 Tập 1: Cho hai điểm A(1; 2; −1), B(0; −2; 3).

Quảng cáo

a) Tính độ dài đường cao AH hạ từ đỉnh A của tam giác OAB với O là gốc tọa độ.

b) Tính diện tích tam giác OAB.

Lời giải:

Bài 14 trang 66 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

a) Gọi H(x; y; z) là chân đường cao hạ từ A xuống OB.

Ta có BH=x;y+2;z3 ; BO=0;2;3

Vì H OB và BHBO cùng phương nên BH=kBO

x=0y+2=2kz3=3kx=0y=2k2z=3k+3

Do đó H(0; 2k – 2; −3k + 3).

Suy ra AH=1;2k22;3k+3+1 hay AH=1;2k4;3k+4 .

AHBO nên AH.BO=0

1.0+2k4.2+3k+4.3=0

k=2013

Suy ra H0;1413;2113 , AH=1;1213;813

Độ dài đường cao AH là AH=12+12132+8132=37713.

b) Ta có BO=0+22+32=13 .

Do đó SΔABC=12.BO.AH=12.13.37713 =292 .

Quảng cáo

Lời giải bài tập Toán 12 Bài tập cuối chương 2 hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Chân trời sáng tạo khác
Tài liệu giáo viên