HĐ2 trang 13 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 12: Tích phân - Kết nối tri thức

HĐ2 trang 13 Toán 12 Tập 2: Xét hình thang cong giới hạn bởi đồ thị y = x2, trục hoành và hai đường thẳng x = 1, x = 2. Ta muốn tính diện tích S của hình thang cong này.

Quảng cáo

a) Với mỗi x ∈ [1; 2], gọi S(x) là diện tích phần hình thang cong đã cho nằm giữa hai đường thẳng vuông góc với trục Ox tại điểm có hoành độ bằng 1 và x (H.4.5).

Cho h > 0 sao cho x + h < 2. So sánh hiệu S(x + h) – S(x) với diện tích hai hình chữ nhật MNPQ và MNEF (H.4.6). Từ đó suy ra 0Sx+hSxhx22xh+h2

b) Cho h < 0 sao cho x + h > 1. Tương tự phần a, đánh giá hiệu S(x) – S(x + h) và từ đó suy ra 2xh+h2Sx+hSxhx20

c) Từ kết quả phần a và phần b, suy ra với mọi h ≠ 0, ta có Sx+hSxhx22xh+h2.

Từ đó chứng minh S'(x) = x2, x ∈ (1; 2).

Người ta chứng minh được S'(1) = 1, S'(2) = 4, tức là S(x) là một nguyên hàm của x2 trên [1; 2].

d) Từ kết quả của phần c, ta có Sx=x33+C. Sử dụng điều này với lưu ý S(1) = 0 và diện tích cần tính S = S(2), hãy tính S.

Gọi F(x) là một nguyên hàm tùy ý của f(x) = x2 trên [1; 2]. Hãy so sánh S và F(2) – F(1).

HĐ2 trang 13 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Với h > 0, x + h < 2, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có: SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay hx2 ≤ S(x + h) – S(x) ≤ h(x + h)2.

Suy ra 0Sx+hSxhx22xh+h2

b) Với h < 0 và x + h > 1, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay h(x+h)2 ≤ S(x + h) – S(x) ≤ hx2.

Suy ra 2xh+h2Sx+hSxhx20

c) Dựa vào kết quả của câu a, b ta suy ra với mọi h ≠ 0, ta có:

Sx+hSxhx22xh+h2

Suy ra S'x=limh0Sx+hSxh=x2,x1;2

d) Vì S(1) = 0 nên S1=133+C=0C=13

Vậy Sx=x3313

Ta có S=S2=23313=73

Giả sử Fx=x33 là một nguyên hàm của f(x) = x2 trên [1; 2].

Khi đó F1=13;F2=83. Ta thấy F2F1=73=S.

Quảng cáo

Lời giải bài tập Toán 12 Bài 12: Tích phân hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên