Giải Toán 7 trang 118 Tập 2 Cánh diều
Với Giải Toán 7 trang 118 Tập 2 trong Bài 13: Tính chất ba đường cao của tam giác Toán 7 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 7 làm bài tập Toán 7 trang 118.
Giải Toán 7 trang 118 Tập 2 Cánh diều
Luyện tập 3 trang 118 Toán lớp 7 Tập 2: Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều.
Lời giải:
Gọi M, N lần lượt là trung điểm của AC và AB.
Do H là trực tâm của tam giác ABC nên CH ⊥ AB, BH ⊥ AC hay CN ⊥ AB, BM ⊥ AC.
Lại có H là trọng tâm của tam giác ABC nên BM, CN là các đường trung tuyến của tam giác ABC.
Khi đó BM vuông góc với AC tại trung điểm M của AC nên BM là đường trung trực của đoạn thẳng AC.
Do đó BA = BC (1).
Do CN vuông góc với AB tại trung điểm N của AB nên CN là đường trung trực của đoạn thẳng AB.
Do đó CA = CB (2).
Từ (1) và (2) suy ra AB = BC = CA nên tam giác ABC đều.
Bài 1 trang 118 Toán lớp 7 Tập 2: Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:
a) AH và BC;
b) BH và CA;
c) CH và AB.
Lời giải:
a) H là trực tâm của tam giác ABC nên AH ⊥ BC.
b) H là trực tâm của tam giác ABC nên BH ⊥ CA.
c) H là trực tâm của tam giác ABC nên CH ⊥ AB.
Bài 2 trang 118 Toán lớp 7 Tập 2: Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
Lời giải:
a) Ta có hình vẽ sau:
Ta thấy H nằm trong tam giác ABC.
b) Ta có hình vẽ sau:
Ta thấy trong tam giác ABC: AB ⊥ AC, AC ⊥ AB.
Do đó AB và AC là hai đường cao của tam giác ABC.
Mà AB cắt AC tại A nên A là trực tâm của tam giác ABC.
Do đó A trùng H.
c) Ta có hình vẽ sau:
Ta thấy H nằm ngoài tam giác ABC.
Bài 3 trang 118 Toán lớp 7 Tập 2: Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc với CA thì DC vuông góc với AB.
Lời giải:
Tam giác ABC có DA ⊥ BC, DB ⊥ CA.
Mà DA cắt DB tại D nên D là trực tâm của tam giác ABC.
Do đó DC ⊥ AB.
Bài 4 trang 118 Toán lớp 7 Tập 2: Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, . Tính và .
Lời giải:
Xét ∆AFC vuông tại F: (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Suy ra hay .
Xét ∆BEA vuông tại E: (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Suy ra 90° - 65° = 25° hay .
Bài 5 trang 118 Toán lớp 7 Tập 2: Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.
Lời giải:
Do H là trực tâm của tam giác ABC nên CH ⊥ AB và AH ⊥ BC.
Do K là trực tâm của tam giác ADC nên AK ⊥ CD và CK ⊥ AD.
Do AB // CD nên AK ⊥ AB.
Mà CH ⊥ AB nên AK // CH.
Do AD // BC nên AH ⊥ AD.
Mà CK ⊥ AD nên AH // CK.
Bài 6 trang 118 Toán lớp 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:
a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;
b) Nếu tam giác ABC có hai điểm H, I trùng nhau thì tam giác ABC là tam giác đều.
Lời giải:
a)
Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.
Do tam giác ABC đều nên AB = BC = CA và .
Do M là trung điểm của BC nên BM = CM.
Xét ∆AMB và ∆AMC có:
AB = AC (chứng minh trên).
(chứng minh trên).
BM = CM (chứng minh trên).
Do đó ∆AMB = ∆AMC (c - g - c).
Suy ra (2 góc tương ứng) và (2 góc tương ứng).
Do , mà nên .
Khi đó AM vuông góc với BC tại trung điểm M của BC nên AM là đường trung trực của đoạn thẳng BC.
Lại có nên AM là đường phân giác của .
Thực hiện tương tự ta chứng minh được BN là đường trung trực của đoạn thẳng CA và BN là đường phân giác của .
CP là đường trung trực của đoạn thẳng AB và CP là đường phân giác của .
Mà AM, BN, CP cắt nhau tại G nên G, H, I, O trùng nhau.
b)
Gọi M, N, P lần lượt là chân đường cao kẻ từ H đến BC, CA, AB.
Khi đó HN ⊥ AC.
Mà H là trực tâm của ∆ABC nên BH ⊥ AC.
HN ⊥ AC, BH ⊥ AC nên B, H, N thẳng hàng.
Xét ∆APH vuông tại P và ∆CMH vuông tại M có:
(2 góc đối đỉnh).
HP = HM (theo giả thiết).
Do đó ∆APH = ∆CMH (góc nhọn - cạnh góc vuông).
Suy ra HA = HC (2 cạnh tương ứng).
Xét ∆HNA vuông tại N và ∆HNC vuông tại N có:
HN chung.
HA = HC (chứng minh trên).
Do đó ∆HNA = ∆HNC (2 cạnh góc vuông).
Suy ra AN = CN (2 cạnh tương ứng).
Khi đó N là trung điểm của AC.
HN ⊥ AC tại trung điểm N của AC nên HN là đường trung trực của đoạn thẳng AC.
Mà B, H, N thẳng hàng nên B thuộc đường trung trực của đoạn thẳng AC.
Do đó BA = BC.
Thực hiện tương tự, ta chứng minh được CA = CB.
Do đó AB = BC = CA.
Vậy tam giác ABC đều.
Lời giải bài tập Toán 7 Bài 13: Tính chất ba đường cao của tam giác hay khác:
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Cánh diều (NXB Đại học Sư phạm).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều