Giải Toán 7 trang 47 Tập 2 Chân trời sáng tạo
Với Giải Toán 7 trang 47 Tập 2 trong Bài 1: Góc và cạnh của một tam giác Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 47.
Giải Toán 7 trang 47 Tập 2 Chân trời sáng tạo
Bài 2 trang 47 Toán 7 Tập 2: Tính số đo x của góc trong Hình 6.
Lời giải:
Xét Hình 6a:
Kẻ MH vuông góc với LN tại H.
Xét tam giác NML vuông tại M:
(trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Do đó = 90o - 62o = 28o.
Xét tam giác MLH vuông tại H:
x + = 90o (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Do đó x = 90o - = 90o - 28o = 62o.
Vậy x = 62o.
Xét Hình 6b:
Xét tam giác QRP vuông tại Q:
(trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Do đó = 90o - 52o = 38o.
Xét tam giác QMP vuông tại M:
x + = 90o (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Do đó x = 90o - = 90o - 38o = 52o.
Vậy x = 52o.
Bài 3 trang 47 Toán 7 Tập 2: Hãy chia tứ giác ABCD trong Hình 7 thành hai tam giác để tính tổng số đo của bốn góc .
Lời giải:
Nối BD.
Xét tam giác ABD: .
Xét tam giác BCD: .
Do đó = 180o + 180o = 360o.
Suy ra = 360o.
Hay = 360o.
Vậy tổng số đo bốn góc trong hình trên bằng 360o.
Bài 4 trang 47 Toán 7 Tập 2: Trong các bộ ba độ dài đoạn thẳng dưới đây, bộ ba nào có thể là độ dài ba cạnh của một tam giác?
a) 4 cm, 5 cm, 7 cm;
b) 2 cm, 4 cm, 6 cm;
c) 3 cm, 4 cm, 8 cm.
Lời giải:
a) Ta thấy 7 < 4 + 5 nên bộ ba độ dài 4 cm, 5 cm, 7 cm có thể là độ dài ba cạnh của một tam giác.
b) Ta thấy 6 = 2 + 4 nên bộ ba độ dài 2 cm, 4 cm, 6 cm không thể là độ dài ba cạnh của một tam giác.
c) Ta thấy 8 > 3 + 4 nên bộ ba độ dài 3 cm, 4 cm, 8 cm không thể là độ dài ba cạnh của một tam giác.
Bài 5 trang 47 Toán 7 Tập 2: Cho tam giác ABC có BC = 1 cm, AB = 4 cm. Tính độ dài cạnh AC (theo đơn vị cm), biết rằng độ dài này là một số nguyên.
Lời giải:
Trong tam giác ABC:
AB - BC < AC < AB + BC hay 4 - 1 < AC < 4 + 1 hay 3 < AC < 5.
Mà độ dài cạnh AC là một số nguyên nên AC = 4 cm.
Vậy AC = 4 cm.
Bài 6 trang 47 Toán 7 Tập 2: Trong một trường học, người ta đánh dấu ba khu vực A, B, C là ba đỉnh của một tam giác, biết các khoảng cách AC = 15 m, AB = 45 m.
a) Nếu đặt ở khu vực C một thiết bị phát wifi có bán kính hoạt động 30 m thì tại khu vực B có nhận được tín hiệu không? Vì sao?
b) Cũng câu hỏi như trên với thiết bị phát wifi có bán kính hoạt động 60 m.
Lời giải:
a) Trong tam giác ABC:
AB - AC < BC hay 45 - 15 < BC hay 30 < BC.
Do đó nếu đặt ở khu vực C một thiết bị phát wifi có bán kính hoạt động 30 m thì tại khu vực B không nhận được tín hiệu.
b) Trong tam giác ABC:
BC < AB + AC hay BC < 45 + 15 hay BC < 60.
Do đó nếu đặt ở khu vực C một thiết bị phát wifi có bán kính hoạt động 60 m thì tại khu vực B nhận được tín hiệu.
Lời giải bài tập Toán 7 Bài 1: Góc và cạnh của một tam giác hay khác:
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Chân trời sáng tạo (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST