Giải Toán 7 trang 84 Tập 2 Chân trời sáng tạo

Với Giải Toán 7 trang 84 Tập 2 trong Bài tập cuối chương 8 Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 84.

Giải Toán 7 trang 84 Tập 2 Chân trời sáng tạo

Bài 1 trang 84 Toán 7 Tập 2: Cho tam giác ABC cân tại A (A^<90°). Hai đường cao BE và CF cắt nhau tại H.

a) Chứng minh rằng ΔBEC=ΔCFB.

b) Chứng minh rằng ΔAHF=ΔAHE.

c) Gọi I là trung điểm của BC. Chứng minh rằng ba điểm A, H, I thẳng hàng.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A (góc A < 90 độ ). Hai đường cao BE và CF cắt nhau tại H.

a) Tam giác ABC cân tại A nên ABC^=ACB^và AB = AC.

Xét ΔBECvuông tại E và ΔCFBvuông tại F có:

ECB^=FBC^(chứng minh trên).

BC chung.

Do đó ΔBEC=ΔCFB(cạnh huyền - góc nhọn).

b) Do ΔBEC=ΔCFB(cạnh huyền - góc nhọn) nên EC = FB (2 cạnh tương ứng).

Mà AB = AC nên AB - FB = AC - EC hay AF = AE.

Xét ΔAHFvuông tại F và ΔAHEvuông tại E có:

AF = AE (chứng minh trên).

AH chung.

Do đó ΔAHF=ΔAHE(cạnh huyền - cạnh góc vuông).

c) DABC có hai đường cao BE, CF cắt nhau tại H nên H là trực tâm của △ABC.

Suy ra AH BC (1).

Xét △AIB và △AIC có:

AB = AC (chứng minh trên).

IB = IC (do I là trung điểm của BC).

AI chung.

Suy ra △AIB = △AIC (c.c.c).

Do đó AIB^=AIC^(2 góc tương ứng).

AIB^+AIC^=180°nên AIB^+AIB^=180°hay 2AIB^=180°.

Suy ra AIB^=AIC^=90°.

Do đó AI BC (2).

Từ (1) và (2) suy ra A, H, I thẳng hàng.

Bài 2 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A, vẽ đường cao AH. Trên tia đối của tia HA lấy điểm M sao cho H là trung điểm của AM.

a) Chứng minh rằng tam giác ABM cân.

b) Chứng minh rằng ΔABC=ΔMBC.

Quảng cáo

Lời giải:

Cho tam giác ABC vuông tại A, vẽ đường cao AH

a) Xét ΔAHBvuông tại H và ΔMHBvuông tại H có:

AH = MH (theo giả thiết).

BH chung.

Do đó ΔAHB=ΔMHB(2 cạnh góc vuông).

Suy ra AB = MB (2 cạnh tương ứng).

Tam giác ABM có AB = MB nên tam giác ABM cân tại B.

b) Do ΔAHB=ΔMHB(2 cạnh góc vuông) nên ABH^=MBH^(2 góc tương ứng).

Xét ΔABCΔMBCcó:

AB = MB (chứng minh trên).

ABC^=MBC^(chứng minh trên).

BC chung.

Do đó ΔABC=ΔMBC(c - g - c).

Bài 3 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A (AB < AC), vẽ đường cao AH. Trên tia đối của tia HC lấy điểm D sao cho HD = HC.

a) Chứng minh rằng AC = AD.

b) Chứng minh rằng ADB^=BAH^.

Quảng cáo

Lời giải:

Cho tam giác ABC vuông tại A (AB < AC), vẽ đường cao AH

a) Trên tia đối của HC lấy D sao cho HC = HD nên H là trung điểm của CD.

AH CD tại trung điểm H của CD nên AH là đường trung trực của CD.

Do đó AC = AD.

b) Tam giác ACD có AC = AD nên tam giác ACD cân tại A.

Do đó ADB^=ACB^.

Trong tam giác ABC vuông tại A: ACB^+ABC^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ACB^=90°ABC^.

Trong tam giác ABH vuông tại H: BAH^+ABH^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra BAH^=90°ABH^.

Do đó ACB^=BAH^.

ACB^=ADB^nên ADB^=BAH^.

Bài 4 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm N sao cho BA = BN. Kẻ BE AN (E AN).

a) Chứng minh BE là tia phân giác của góc ABN.

b) Kẻ đường cao AH của tam giác ABC. Gọi K là giao điểm của AH với BE. Chứng minh rằng NK // CA.

c) Đường thẳng BK cắt AC tại F. Gọi G là giao điểm của đường thẳng AB với NF. Chứng minh rằng tam giác GBC cân.

Quảng cáo

Lời giải:

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm N sao cho BA = BN.

a) Xét △BEA vuông tại E và △BEN vuông tại E có:

BA = BN (theo giả thiết).

BE chung.

Suy ra △BEA = △BEN (cạnh huyền - cạnh góc vuông).

Do đó EBA^=EBN^(2 góc tương ứng).

Mà BE nằm trong ABN^nên BE là tia phân giác của ABN^.

b) Tam giác BAN có hai đường cao AH và BE cắt nhau tại K nên K là trực tâm của tam giác BAN.

Do đó NK AB.

Mà AC AB nên NK // AC.

c) Do BE là tia phân giác của ABN^nên ABE^=NBE^.

Xét ΔABFΔNBFcó:

AB = NB (theo giả thiết).

ABF^=NBF^(chứng minh trên).

BF chung.

Do đó ΔABF=ΔNBF(c.g.c).

Suy ra AF = NF (2 cạnh tương ứng) và BAF^=BNF^=90°(2 góc tương ứng).

Do đó FN BC.

Xét ΔAFGvuông tại A và ΔNFCvuông tại N có:

AF = NF (chứng minh trên).

AFG^=NFC^(2 góc đối đỉnh).

Do đó ΔAFG=ΔNFC(góc nhọn - cạnh góc vuông).

Suy ra AG = NC (2 cạnh tương ứng).

Mà BA = BN nên BA + AG = BN + NC hay BG = BC.

Tam giác BGC có BG = BC nên tam giác BGC cân tại B.

Bài 5 trang 84 Toán 7 Tập 2: Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N.

a) Chứng minh rằng BMN^=HAC^.

b) Kẻ MI AH (I AH), gọi K là giao điểm của AH với BM. Chứng minh rằng I là trung điểm của AK.

Lời giải:

Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH

a) Do M nằm trên đường trung trực của BC nên MB = MC.

Xét ΔBMNvuông tại N và ΔCMNvuông tại N có:

MB = MC (chứng minh trên).

MN chung.

Do đó ΔBMN=ΔCMN(cạnh huyền - cạnh góc vuông).

Suy ra BMN^=CMN^(2 góc tương ứng) (1).

Do MN BC, AH BC nên MN // AH.

Do đó CMN^=HAC^(2 góc đồng vị) (2).

Từ (1) và (2) suy ra BMN^=HAC^.

b) Do ΔBMN=ΔCMN(cạnh huyền - cạnh góc vuông) nên MBN^=MCN^(2 góc tương ứng).

Do MI AH, BC AH nên MI // BC.

Do đó AMI^=MCN^(2 góc đồng vị) và KMI^=MBN^(2 góc so le trong).

Do đó AMI^=KMI^.

Xét ΔAMIvuông tại I và ΔKMIvuông tại I có:

AMI^=KMI^(chứng minh trên).

MI chung.

Do đó ΔAMI=ΔKMI(góc nhọn - cạnh góc vuông).

Suy ra AI = KI (2 cạnh tương ứng).

Mà I nằm giữa A và K nên I là trung điểm của AK.

Bài 6 trang 84 Toán 7 Tập 2: Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FD = FN.

a) Chứng minh rằng ΔMFN=ΔPFD.

b) Trên đoạn thẳng FD lấy điểm H sao cho F là trung điểm của GH. Gọi K là trung điểm của DP. Chứng minh rằng ba điểm M, H, K thẳng hàng.

Lời giải:

<Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G

a) Tam giác MNP có đường trung tuyến NF nên F là trung điểm của MP.

Do đó FM = FP.

Xét ΔMFNΔPFDcó:

MF = PF (chứng minh trên).

MFN^=PFD^(2 góc đối đỉnh).

FN = FD (theo giả thiết).

Do đó ΔMFN=ΔPFD(c.g.c).

b) Tam giác MNP có G là giao điểm hai đường trung tuyến ME và NF nên G là trọng tâm của tam giác MNP.

Do đó NG = 23NF.

Suy ra GF = 13NF.

Do F là trung điểm của GH nên GF = HF.

Suy ra HF = 13NF.

Mà NF = DF nên HF = 13DF.

Suy ra DH = 23DF.

Tam giác MDP có đường trung tuyến DF và DH = 23DF nên H là trọng tâm của tam giác MDP.

Lại có MK là đường trung tuyến của tam giác MDP nên M, H, K thẳng hàng.

Bài 7 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A có AB = 12AC, AD là tia phân giác BAC^(D BC). Gọi E là trung điểm của AC.

a) Chứng minh rằng DE = DB.

b) AB cắt DE tại K. Chứng minh rằng tam giác DCK cân và B là trung điểm của đoạn thẳng AK.

c) AD cắt CK tại H. Chứng minh rằng AH KC.

Lời giải:

Cho tam giác ABC vuông tại A có AB = 1/2 AC, AD là tia phân giác góc BAC

a) Do E là trung điểm của AC nên AE = 12AC.

Mà AB = 12AC nên AE = AB.

Do AD là tia phân giác của BAC^nên BAD^=EAD^.

Xét ΔBADΔEADcó:

AB = AE (chứng minh trên).

BAD^=EAD^(chứng minh trên).

AD chung.

Do đó ΔBAD=ΔEAD(c.g.c).

Suy ra DB = DE (2 cạnh tương ứng).

b) Do ΔBAD=ΔEAD(c.g.c) nên ADB^=ADE^(2 góc tương ứng).

KDB^=CDE^(2 góc đối đỉnh) nên ADB^+KDB^=ADE^+CDE^hay ADK^=ADC^.

Xét ΔADKΔADCcó:

DAK^=DAC^(chứng minh trên).

AD chung.

ADK^=ADC^(chứng minh trên).

Do đó ΔADK=ΔADC(g.c.g).

Suy ra DK = DC (2 cạnh tương ứng) và AK = AC (2 cạnh tương ứng).

Tam giác DCK có DK = DC nên tam giác DCK cân tại D.

Do AK = AC, mà AC = 2AB nên AK = 2AB.

Mà A, B, K thẳng hàng nên B là trung điểm của AK.

c) Do AD là đường phân giác của BAC^nên BAD^=CAD^hay KAH^=CAH^(2 góc tương ứng).

Xét △KAH và △CAH có:

AK = AC (chứng minh trên).

KAH^=CAH^(chứng minh trên).

AH chung.

Suy ra △KAH = △CAH (c.g.c).

Do đó AHK^=AHC^(2 góc tương ứng).

AHK^+AHC^=180°nên AHK^+AHK^=180°hay 2AHK^=180°.

Suy ra AHK^=AHC^=90°.

Do đó AH KC.

Bài 8 trang 84 Toán 7 Tập 2: Ở Hình 1, cho biết AE = AF và ABC^=ACB^. Chứng minh rằng AH là đường trung trực của BC.

Ở Hình 1, cho biết AE = AF và góc ABC = ACB

Lời giải:

Ở Hình 1, cho biết AE = AF và góc ABC = ACB

Tam giác ABC có ABC^=ACB^nên tam giác ABC cân tại A.

Do đó AB = AC.

Suy ra A nằm trên đường trung trực của BC (1).

Mà AE = AF nên AB - AE = AC - AF hay BE = CF.

Xét ΔEBCΔFCBcó:

BE = CF (chứng minh trên).

EBC^=FCB^(theo giả thiết).

BC chung.

Do đó ΔEBC=ΔFCB(c.g.c).

Suy ra ECB^=FBC^(2 góc tương ứng) hay HCB^=HBC^.

Tam giác HBC có HCB^=HBC^nên tam giác HBC cân tại H.

Do đó HB = HC.

Suy ra H nằm trên đường trung trực của BC (2).

Từ (1) và (2) suy ra AH là đường trung trực của BC.

Bài 9 trang 84 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng EBH^=ACM^.

c) Chứng minh rằng EBBC.

Lời giải:

Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M

a) Trên tia đối của tia HC lấy điểm E sao cho HE = HM nên H là trung điểm của ME.

Ta thấy BH vuông góc với ME tại trung điểm H của ME nên BH là đường trung trực của ME.

Do đó BM = BE.

Tam giác MBE có BM = BE nên tam giác MBE cân tại B.

b) Trong ΔBHMvuông tại H: HBM^+BMH^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra HBM^=90°BMH^.

Trong ΔCAMvuông tại A: ACM^+CMA^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ACM^=90°CMA^.

BMH^=CMA^(2 góc đối đỉnh) nên HBM^=ACM^(1).

Xét ΔBHEvuông tại H và ΔBHMvuông tại H có:

BH chung.

HE = HM (theo giả thiết).

Do đó ΔBHE=ΔBHM(2 cạnh góc vuông).

Suy ra EBH^=MBH^(2 góc tương ứng) (2).

Từ (1) và (2) suy ra EBH^=ACM^.

c) Do CM là tia phân giác của BCA^nên BCM^=ACM^.

Xét ΔBHCvuông tại H: HBC^+BCH^=90°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra HBC^+ACM^=90°.

EBH^=ACM^nên HBC^+EBH^=90°hay EBC^=90°.

Do đó EB >BC.

Bài 10 trang 84 Toán 7 Tập 2: Trên đường thẳng a lấy ba điểm phân biệt I, J, K (J ở giữa I và K). Kẻ đường thẳng b vuông góc với a tại J, trên b lấy điểm M khác điểm J. Đường thẳng qua I vuông góc với MK cắt b tại N. Chứng minh rằng KN vuông góc với MI.

Lời giải:

Trên đường thẳng a lấy ba điểm phân biệt I, J, K

Xét tam giác MIK có MJ IK, IN MK.

Mà MJ cắt IN tại N nên N là trực tâm của tam giác MIK.

Do đó NK vuông góc với MI.

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Chân trời sáng tạo khác
Tài liệu giáo viên