Bài 2 trang 65 Toán 8 Tập 2 Cánh diều

Giải Toán 8 Bài 3: Đường trung bình của tam giác - Cánh diều

Bài 2 trang 65 Toán 8 Tập 2: Cho tam giác ABC có AM là đường trung tuyến, các điểm N, P phân biệt thuộc cạnh AB sao cho AP = PN = NB. Gọi Q là giao điểm của AM và CP. Chứng minh:

a) MN // CP;

b) AQ = QM;

c) CP = 4PQ.

Quảng cáo

Lời giải:

Bài 2 trang 65 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Do PN = NB nên N là trung điểm của BP.

Do AM là đường trung tuyến của ∆ABC nên M là trung điểm của BC.

Xét ∆BCP có M, N lần lượt là trung điểm của BC, BP nên MN là đường trung bình của ∆BCP

Suy ra MN // CP.

b) Do AP = PN nên P là trung điểm của AN.

Mà MN // CP, Q ∈ CP nên MN // PQ.

Xét ∆AMN có PQ đi qua P là trung điểm của AN và PQ // MN

Suy ra Q là trung điểm của AM nên AQ = QM.

c) Xét ∆AMN có P, Q lần lượt là trung điểm của AN, AM nên là đường trung bình của ∆AMN. Do đó PQ=12MN.

Lại có MN là đường trung bình của ∆BCP nên MN=12CP.

Khi đó PQ=12MN=1212CP=14CP

Suy ra CP = 4PQ.

Quảng cáo

Lời giải bài tập Toán 8 Bài 3: Đường trung bình của tam giác hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 Cánh diều hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Cánh diều (Tập 1 & Tập 2) (NXB ĐH Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Cánh diều khác
Tài liệu giáo viên